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Abstract

This work is a contribution to the theory of products of finite groups. A group G = AB is a

weakly totally permutable product of subgroups A and B if every subgroup, U of A such that

U ≤ A ∩ B or A ∩ B ≤ U , permutes with every subgroup of B and if every subgroup V of

B such that V ≤ A ∩ B or A ∩ B ≤ V , permutes with every subgroup of A. It follows that

a totally permutable product is a weakly totally permutable product. Some results on totally

permutable products in the framework of formation theory are generalised. In particular it is

shown that if the factors of a weakly totally permutable product are in F , then the product

is also in F , where F is a formation containing U , the class of all finite supersoluble groups.

It is also shown that the F -residual (and F -projector) of the product G is just the product of

the F-residuals (and respectively F-projectors) of the factors A and B, when F is a saturated

formation containing U . Moreover, it is shown that a weakly totally permutable product is an

SC-group if and only if its factors are SC-groups.

In the framework of Fitting classes some results are extended to weakly totally permutable

products. Fischer classes containing U were proved to behave nicely with respect to forming

products in totally permutable products. It is shown that a particular Fischer class, F � N,

where F is a Fitting class containing U and N is the class of all nilpotent groups, also behave

nicely with respect to forming products in weakly totally permutable products.
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Introduction

Unless otherwise stated, all groups in this thesis are finite.

In this thesis the structure of factorised groups is studied. Let a group G = G1G2...Gn be a

product of subgroups G1, G2, ..., Gn. We look at how the structure of G affects and is affected by

the structure of the factorsG1, G2, ..., Gn when the factors have certain permutability properties.

Asaad and Shaalan in [5] introduced two types of products of finite groups.

Definition 0.0.1. Let a group G = AB be the product of subgroups A and B. Then

(i) G is a totally permutable product of subgroups A and B if every subgroup of A permutes

with every subgroup of B.

(ii) G is a mutually permutable product of subgroups A and B if A permutes with every subgroup

of B and B permutes with every subgroup of A.

A group G = G1G2...Gn is a pairwise mutually (totally) permutable product of subgroups

G1, G2, ..., Gn if Gi (respectively every subgroup of Gi) permutes with every subgroup of Gj, for

all i, j ∈ {1, 2, ..., n}, where i 6= j. The notion of a totally permutable product can be regarded

as a generalisation of that of a central product while the notion of a mutually permutable

product may be regarded as a generalisation of a normal product. It is known that the normal

product of two supersoluble groups is not necessarily supersoluble. Asaad and Shaalan proved

that a totally permutable product of two supersoluble groups is supersoluble. This contrast

led many authors to study groups of this type and generate many results in the framework of

formation theory, Fitting classes and other classes of finite groups [2, 3, 5-12, 16-20, 22, 23, 24,

25, 26, 29].

Peter Hauck defined a new type of product of finite groups:
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Definition 0.0.2. A group G = AB is a weakly totally permutable product of subgroups A and

B if every subgroup, U of A such that U ≤ A∩B or A∩B ≤ U , permutes with every subgroup

of B and if every subgroup V of B such that V ≤ A ∩ B or A ∩ B ≤ V , permutes with every

subgroup of A.

Analogously a group G = G1G2...Gn is the pairwise weakly totally permutable product of

subgroups G1, G2, ..., Gn if every subgroup, U of Gi such that U ≤ Gi ∩ Gj or Gi ∩ Gj ≤ U ,

permutes with every subgroup of Gj, for all i, j ∈ {1, 2, ..., n} where i 6= j.

It follows that a weakly totally permutable product is a mutually permutable product since

A ∩B ≤ A and A ∩B ≤ B. However the converse is not true as the following example shows.

Example 0.0.3. Let G = [T7]S3 be the semi-direct product of T7 and S3 where T7 is the non-

abelian group of order 73 and exponent 7 whose presentation is

T7 = 〈a, b|a7 = b7 = [a, b]7 = 1〉

and S3 is the symmetric group of degree 3, given by

S3 = 〈x, y|x3 = y2 = 1, xy = x2〉.

In this case S3 acts on T7 in the following way:

ay = b, by = a, cy = c−1, ax = a2, bx = b4, cx = c, where c = [a, b].

Let A = T7〈x〉 and B = G. Then G = AB is the mutually permutable product of subgroups A

and B and A ∩ B = A. Hence 〈a〉 ≤ A ∩ B = A and 〈y〉 ≤ B = G. But, 〈a〉 does not permute

with 〈y〉. Hence G = AB is not the weakly totally permutable product of subgroups A and B.

A totally permutable product is necessarily a weakly totally permutable product since all sub-

groups of A permute with all subgroups of B. However, the converse is not true as the following

example shows.

Example 0.0.4. Let

G1 = S3 = 〈x, y|x3 = y2 = 1, xy = x2〉
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and

G2 = 〈z|z3 = 1〉.

Let G = G1 × G2. Let A = 〈x, z〉 and B = 〈x, y〉. Since A has index 2 in G, A is a normal

subgroup of G. Since B = G1 is a direct factor of G, B is also normal in G. Therefore G = AB

is the product of normal subgroups A and B. Also, A ∩ B = 〈x〉 is a simple normal subgroup

of G since it is a normal subgroup of G1, a direct factor of G. Subgroups of G that contain

A ∩ B properly are either A or B. Hence G = AB is the weakly totally permutable product of

A and B. But , 〈xz〉(≤ A) does not permute with 〈y〉(≤ B). Thus, G = AB is not the totally

permutable product of subgroups A and B.

It is natural to ask which results on totally permutable products can be extended to weakly

totally permutable products. The main objective of this thesis it to attempt to answer this

question.

In Chapter 1 the fundamental concepts of group theory which are relevant in the following

chapters are presented. Results on formation theory and some representation theory are also

presented.

In Chapter 2 some results on totally permutable products in the framework of formation theory,

most of which have proofs, are presented. The proofs are based on the ideas in [10, 11, 12, 22, 29].

In Chapter 3 some results on totally permutable products presented in Chapter 2 are extended

to weakly totally permutable products. The main aim of Chapter 4 is presenting results on

totally permutable products in the framework of Fitting classes and extending some of them

to weakly totally permutable products. The thesis is brought to a close by looking at ideas to

generalise some of the results on totally permutable products which were not generalised in the

thesis.
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Chapter 1

Fundamental Concepts

All groups considered in this thesis are finite unless otherwise stated.

In this chapter basic concepts of group theory are presented. In particular results on some

special subgroups of a group such as Hall subgroups, Fitting subgroups and Frattini subgroups

are presented. Results on formations are also presented. These results presented are for easy

reference in the chapters to follow and they are presented without proofs. Most results in this

chapter are taken from [23] and other texts such as [32, 27, 15, 4]. Notation in [23] is followed

unless otherwise stated.

Let G be a group, A and B be subgroups of G. Then A permutes with B if AB = BA.

The product AB is a subgroup of G if and only if A permutes with B. The subgroup A is a

permutable subgroup of G if it permutes with every subgroup of G.

A fundamental result on subgroups of a group called the Dedekind Identity is useful:

Theorem 1.0.5. (Dedekind Identity) Let A, B and C be subgroups of a group G with B ≤ A.

Then A ∩BC = B(A ∩ C).
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1.1 Hall Subgroups.

Let G be a group and p be a prime number that divides the order of G. The group G is a

p-group if |G| = pn for some positive integer n. A subgroup of G which is a p-group is called

a p-subgroup of G. A maximal p-subgroup of G is called a Sylow p-subgroup of G. Sylow

p-subgroups for each prime p of a group always exist and any two Sylow p-subgroups are con-

jugate.

Let π be a non-empty set of primes and let π′ be the set of all primes not in π. A positive integer

n is a π-number if each prime divisor of n belongs to π. A group G is a π-group if the order

of G is a π-number. A Sylow π-subgroup is a maximal π-subgroup of G. Sylow π-subgroups

always exist but are not conjugate in general if π contains more than one prime.

A Hall π-subgroup of G is a π-subgroup H of G such that |G : H| is a

π′-number. It follows that Hall π-subgroups are Sylow π-subgroups. In general Hall π-subgroups

do not always exist in a group.

We present a result known as the Frattini argument.

Theorem 1.1.1. If H is a normal subgroup of G and P is a Sylow p-subgroup of H, then

G = NG(P )H.

Below is an important result on subgroups whose subgroups are normalised by another sub-

group.

Lemma 1.1.2. [21, Corollary to Theorem 2.2.1] Let G be a group and let H and N be subgroups

of G. If every subgroup of N is normalised by H, then [N,H] ≤ Z(N).

1.2 Soluble, Supersoluble and Nilpotent Groups

Let G be a group and consider the series for G

H = G1 �G2 � ...�Gn = G. (1.1)
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such that Gi�Gi+1 for all i ∈ {1, 2, ..., n−1}. Then the series is called a subnormal series from

H to G and H is a subnormal subgroup of G. If Gi � G for all i ∈ {1, 2, ..., n − 1}, then the

series (1.1) is a normal series. A chief series is a normal series such that Gi+1/Gi is a minimal

normal subgroup of G/Gi for all i ∈ {1, 2, ..., n− 1}. In this case the factors Gi+1/Gi are called

chief factors of G. Two chief series of a finite group have the same number of terms and the

chief factors are pairwise isomorphic with respect to a suitable ordering.

Definition 1.2.1. A group G is soluble if it has an abelian series, that is, a subnormal series

1 = G1 �G2 � ...�Gn = G.

such that Gi+1/Gi is abelian for all i ∈ {1, 2, ..., n− 1}.

Hall [23, I, Theorem 3.3(a)] proved that Hall π-subgroups always exist and are conjugate in a

soluble group. Moreover he characterised soluble groups in terms of Hall subgroups:

Theorem 1.2.2. A group G is soluble if and only if it possesses Hall π-subgroups for each set

π of primes.

A Hall system can now be defined. Let P represent the set of all primes.

Definition 1.2.3. Let G be a soluble group and let σ(G) denote the set of primes dividing |G|.

A Hall system of G is a set Σ of Hall subgroups of G which satisfies the following conditions:

(i) For each π ⊆ P,Σ contains exactly one Hall π-subgroup.

(ii) If A,B ∈ Σ, then AB = BA.

Let G be a group and let x, y ∈ G. The commutator of x with y is [x, y] = x−1y−1xy. If A and

B are subgroups of G, then

[A,B] = 〈[a, b] | a ∈ A, b ∈ B〉.

Now [A,B] = 1 if and only if B ≤ CG(A) and A ≤ CG(B). Also [A,B] � 〈A,B〉. The

commutator subgroup or the derived subgroup of G is defined as G′ = [G,G]. Now G/G′ is an

abelian group. The series

G = G(0) �G′ �G(2) � ...�G(n) = G(n+1)

6



where G(i+1) = (G(i))′ = [G(i), G(i)] for i ≥ 1 is called the derived series of G. The derived series

is a series of characteristic subgroups of G. The factor G(i)/G(i+1) is abelian for all i ≥ 1. The

last subgroup of the derived series, that is, the subgroup [G(n), G(n)] = (G(n))′, is called the

soluble residual of G. The soluble residual of a group G is the smallest normal subgroup of G

such that G/N is soluble. So G is soluble if and only if the soluble residual is trivial. Also a

soluble group has a subnormal series in which its factors are abelian for example the derived

series.

A group G is perfect if [G,G] = G′ = G. It follows that the soluble residual of a non-soluble

group G is perfect. In fact, it is a maximal normal perfect subgroup of G.

Definition 1.2.4. A group G is supersoluble if it has a cyclic series, that is, a normal series

1 = G1 �G2 � ...�Gn = G

such that Gi+1/Gi is cyclic for each i ∈ {1, 2, ..., n− 1}.

The chief factors of a supersoluble group are of prime order. A supersoluble group is soluble

but the converse is not true in general. The symmetric group of degree 4, S4 is an example

of a soluble group which is not supersoluble. Supersoluble groups have the property that each

maximal subgroup has prime index in the group.

Theorem 1.2.5. Consider a group G in which the index of each maximal subgroup is a prime

number. If p is the largest prime dividing |G|, then the corresponding Sylow p-subgroup is a

normal subgroup of G.

Therefore this result holds for supersoluble groups.

Definition 1.2.6. A group G is nilpotent if it has a central series, that is, a normal series

1 = G1 �G2 � ...�Gn = G

such that Gi+1/Gi ≤ Z(G/Gi) for all i ∈ {1, 2, ..., n− 1}.

7



A nilpotent group is supersoluble but the converse is not true. The symmetric group of degree

3, S3 is supersoluble but not nilpotent.

All p-groups are nilpotent. A direct product of nilpotent groups is also nilpotent. Several

characterisations of nilpotent groups are given by the following theorem:

Theorem 1.2.7. Let G be a group. Then the following properties are equivalent:

(i) G is nilpotent.

(ii) Every subgroup of G is subnormal.

(iii) Every maximal subgroup of G is normal.

(iv) G is the direct product of its Sylow subgroups.

Lemma 1.2.8. If G is a nilpotent group and 1 6= N �G, then N ∩ Z(G) 6= 1.

The result below will be useful in Chapter 4.

Lemma 1.2.9. [7, Lemma 1.3.4] Let p be a prime. If G is a non-abelian p-group, then the

group of power automorphisms of G is an abelian p-group.

1.3 The Fitting Subgroup, Op(G) and Op(G).

Fitting proved that the product of normal nilpotent subgroups is nilpotent. The Fitting sub-

group of a group G, denoted by F (G) is the subgroup generated by all normal nilpotent sub-

groups ofG. This is the unique largest normal nilpotent subgroup ofG, hence it is characteristic.

Theorem 1.3.1. If G is a group, then F (G) centralizes every chief factor of G.

Hence F (G) centralizes all minimal normal subgroups of G.

Definition 1.3.2. Let G be a group.

(i) The subgroup Op(G) for each prime p dividing |G| is defined as:

Op(G) = 〈N | N �G and N is a p-group 〉.

(ii) The subgroup Op(G) for each prime p dividing |G| is defined by:

8



Op(G) =
⋂
{N | N �G and G/N is a p-group }.

The subgroup Op(G) is generated by all Sylow q-subgroups for all primes q 6= p, dividing |G|.

For each prime p subgroup Op(G) is the intersection of all Sylow p-subgroups of the group G.

So the Fitting subgroup satisfies:

F (G) = 〈Op(G) | p is a prime dividing |G|〉.

Lemma 1.3.3. For a soluble group G 6= 1, F (G) is non-trivial.

1.4 The Frattini Subgroup.

Let G be a group. The Frattini subgroup, denoted by Φ(G) is defined to be 1 when G = 1,

otherwise Φ(G) is the intersection of all maximal subgroups of G. The Frattini subgroup is a

characteristic subgroup and it is also nilpotent. Let G be a group and g ∈ G. Then g is a

non-generator of G if for each subset X of G, G = 〈g,X〉 implies that G = 〈X〉. The Frattini

subgroup is the set of all non-generators. Nilpotent, supersoluble and soluble groups can be

characterised in terms of their Frattini subgroups.

Theorem 1.4.1. Let G be a group. Then

(i) G is nilpotent if and only if G/Φ(G) is nilpotent.

(ii) G is supersoluble if and only if G/Φ(G) is supersoluble.

(iii) G is soluble if and only if G/Φ(G) is soluble.

The following is another characterisation of nilpotent groups in terms of their Frattini sub-

groups.

Theorem 1.4.2. Let G be a group. Then G is nilpotent if and only if G′ ≤ Φ(G).

1.5 Primitive Groups.

Let G be a group and let H be a subgroup of G. The core of H in G, CoreG(H), is defined as

the largest normal subgroup of G contained in H. If CoreG(H) = 1, then H is core free.

9



Definition 1.5.1. A group G is called primitive if it has a maximal subgroup M such that

CoreG(M) = 1.

In this case M is a stabiliser of G.

Definition 1.5.2. Let G be a finite group and U and V be subgroups of G. Then U is supple-

mented by V in G if UV = G. If U is supplemented by V in G and U ∩ V = 1 , then U is

complemented by V in G.

Theorem 1.5.3. Let G be a primitive group with stabiliser M . Then exactly one of the following

three statements holds:

(i) G has a unique minimal normal subgroup N , N = CG(N) and N is complemented by M in

G.

(ii) G has a unique minimal normal subgroup N , N is non-abelian and N is supplemented by

M in G.

(iii) G has exactly two minimal normal subgroups N1 and N2, and each of them is complemented

by M in G. Also CG(N1) = N2, CG(N2) = N1 and N1
∼= N2

∼= N1N2 ∩M . Moreover, if V < G

and V N1 = V N2 = G, then V ∩N1 = V ∩N2 = 1.

So primitive groups fall into three categories and all the soluble primitive groups satisfy property

(i). A group with property (i) is called a group of type 1.

Theorem 1.5.4. Let G be a group.

(a) If G is a primitive soluble group with stabiliser M , then

(i) G has a unique minimal normal subgroup N , for which M ∩ N = 1, MN = G and N =

CG(N) = F (G).

(ii) If p is the prime dividing |N |, then Op(M) = 1.

(b) G is a primitive group of type 1 if and only if (i) G has a unique minimal normal subgroup

N , and (ii) N is abelian, and (iii) N � Φ(G).

A group is characteristically simple if it has no proper non-trivial characteristic subgroups. A

finite group is characteristically simple if and only if it is a direct product of isomorphic simple

groups. Minimal normal subgroups are characteristically simple. Let G be a group and N be a

10



minimal normal subgroup of G. If N is abelian, then N is a direct product of isomorphic groups

of order p for some prime p, that is, N is an elementary abelian p-group. If N is non-abelian,

then N is a direct product of isomorphic non-abelian simple groups.

Theorem 1.5.5. An elementary abelian p-group G of order pn is isomorphic to a vector space

of dimension n over the field Zp with p elements.

Hence abelian minimal normal subgroups can be viewed as vector spaces which will be useful

in Chapter 2.

1.6 Formations.

A class of groups is a collection X of groups with the property that if G ∈ X and if H ∼= G,

then H ∈ X.

Definition 1.6.1. Let X be a class of groups. Then

(i) qX is a class of groups with the following property:

If H ∈ X and there exists an epimorphism from H onto G, then G ∈ qX.

(ii) r0X is a class of groups with the following property:

If Ni �G, for each i = {1, 2, ..., r} with G/Ni ∈ X and
⋂r
i=1Ni = 1, then G ∈ r0X.

(iii) snX is a class of groups with the following property:

If G sn H and H ∈ X, then G ∈ snX.

(iv) n0X is a class of groups with the following property:

If Ki sn G, for each i = {1, 2, ..., r} with Ki ∈ X, then G = 〈K1, ..., Kr〉 ∈ n0X.

11



Let G be a group. Then (G) denotes the smallest class containing the group G. The class of

all primitive groups is denoted by B.

Definition 1.6.2. A formation is a class F of groups satisfying the following conditions:

(a) If G ∈ F and N �G, then G/N ∈ F.

(b) If N1, N2 �G with N1 ∩N2 = 1 and G/Ni ∈ F for i = 1, 2, then G ∈ F.

The classes of all finite soluble, supersoluble and nilpotent groups are examples of formations

and will be denoted by S, U and N respectively. The class Sp denotes the class of all finite

p-groups and is a formation. A formation is Q and R0-closed, that is, if F is a formation, then

QF ⊆ F and R0F ⊆ F.

Definition 1.6.3. Let F be a formation and let G be a group. The F-residual, GF, of G is the

smallest normal subgroup of G such that G/GF ∈ F.

Theorem 1.6.4. [23, IV, Theorem 1.18] Let F be a formation of soluble groups and let D =

G1 ×G2 × ...×Gn. Then DF = GF
1 ×GF

2 × ...×GF
n.

A formation F is saturated if G ∈ F whenever G/Φ(G) ∈ F. The classes S, U and N are

examples of saturated formations.

Definition 1.6.5. Let X be a class of groups.

(a) A maximal subgroup M of a group G is X-normal if

G/CoreG(M) ∈ X

otherwise it is said to be X-abnormal.

(b) A subgroup H of G is X-subnormal in G if either H = G or there exist a chain

H = Hn ≤ Hn−1 ≤ ... ≤ H0 = G

such that Hi+1 is a maximal X-normal subgroup of Hi, for every i ∈ {0, 1, ..., n− 1}.

Theorem 1.6.6. [13, Theorem 3.7] Let F be a subgroup-closed formation. Let G be a soluble

group and H an F-subnormal subgroup of G. Suppose there exists a normal subgroup M such

that M ≤ H ∩ Φ(G) and H/M ∈ F. Then H ∈ F.
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A homomorph X is a class of groups such that if G ∈ X and N / G, then G/N ∈ X. Hence a

formation is a homomorph.

Let h : P −→ {group classes} be a function which associates with each prime p a class(possibly

empty) of groups h(p). Let X denote the class of all finite groups G which satisfy the following

condition:

For all non-Frattini chief factors H/K of G and for all primes p dividing |H/K|, implies that

G/CG(H/K) ∈ h(p).

The class X is locally defined by h and is denoted by LC(h), that is, X = LC(h). The function

h is a local function if h(p) is a homomorph for all p ∈ P. A class X is a local class if X =

LC(h) for some local function h.

Definition 1.6.7. Let h be a local function and let h = LC(h). Then h is

(i) integrated if h(p) ⊆ h for all p ∈ P

(ii) full if h(p) = Sph(p) for all p ∈ P.

Definition 1.6.8. (a) A local function f : P −→ {homomorphs} is called a formation function

if f(p) is a formation for all p ∈ P.

(b) A class F of finite groups is called a local formation if there exists a formation function f

such that F = LC(f). In this case we say F = LF(f).

(c) If f : P −→ {classes of groups}, a chief factor H/K of a group G is called f -central if

G/CG(H/K) ∈ f(p) for all primes p dividing |H/K|.

Otherwise it is called f -eccentric.

So a group belongs to the class LC(f) if and only if its non-Frattini chief factors (it is sufficient

for the chief factors to be from one chief series) are f -central.

However for local formations the restriction to non-Frattini chief factors is not necessary.

Theorem 1.6.9. [23, IV, Theorem 3.2] Let f be a formation function. Then G ∈ LF(f) if

and only if all chief factors of G are f -central.
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In [23, IV, Theorem 3.7] it is shown that a formation function f which defines a local class F

that is full and integrated is unique.

Definition 1.6.10. The uniquely determined full and integrated formation function defining a

local formation F is called the canonical local definition of F.

Theorem 1.6.11. (Gaschütz-Lubeseder-Schmid)[23, IV, Theorem 4.6]

A formation of finite groups is saturated if and only if it is local.

The class U, of all finite supersoluble groups, is the local formation LF(u) defined by:

u(p) = the formation of abelian groups of exponent dividing p− 1 for all primes p.

Since u(p) ⊆ U, u is integrated. By [23, IV, Example 3.4(f)] supersoluble groups are charac-

terised by the condition that their chief factors have prime order.

1.7 The F-hypercentre.

Let A be a set. A group G is called an A-group if there is associated with each element a ∈ A

an endomorphism of G denoted by g → ga for all g ∈ G.

Definition 1.7.1. Let f be a formation function and G be an A-group. Then

(a) A acts f -centrally on an A-composition factor H/K of G if A/CA(H/K) ∈ f(p) for all

primes p dividing |H/K|, otherwise A acts f -eccentrically.

(b) A acts f -hypercentrally(respectively f -hypereccentrically) on G if it acts f -centrally(respectively

f -eccentrically) on every A-composition factor of G.

Lemma 1.7.2. [23, IV, Lemma 6.4(c)] Let f be a formation function, let G be an A-group

and let M and N be A-invariant normal subgroups of G. If A acts f -hypercentrally on M and

N , then it acts similarly on MN .

Let f1 and f2 be two integrated local definitions of a local formation F. Then Zf1(G) = Zf2(G)

and hence we have the following definition.
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Definition 1.7.3. Let F = LF(f) and let G be an A-group. Then a group possesses a unique

maximal f -hypercentral normal subgroup denoted by Zf (G,A). When A is the group G acting

by conjugation the unique maximal f -hypercentral normal subgroup is called the f -hypercentre of

G, denoted by Zf (G). If f is integrated, then (since if f1 and f2 are integrated, Zf1(G) = Zf2(G)

and we have a unique f -hypercentre and) it is denoted by ZF(G) and called the F-hypercentre

of G.

Theorem 1.7.4. [23, IV, Theorem 6.9] Let F = LF(f) with f integrated and let G be an

A-group such that CA(G) = 1. If Zf (G,A) = G, then A ∈ F.

Corollary 1.7.5. Let F = LF(f) with f integrated and let G be an A-group. If Zf (G,A) = G,

then A/CA(G) ∈ F.

If F = N, the class of finite nilpotent groups, then ZN(G) = Z∞(G) is called the hypercentre

of G.

There is a fundamental result by Maier and Schmid [30, Theorem] about permutable subgroups:

Theorem 1.7.6. [30, Theorem] If H is a permutable subgroup of a finite group G, then

HG/CoreG(H) is contained in the hypercentre Z∞(G/CoreG(H)) of G/CoreG(H).

So if H is core-free in the theorem above, then H is in the hypercentre Z∞(G) of G.

Theorem 1.7.7. [23, IV, Theorem 6.15] Let snF = F = LF (F ), and let G be a group. Then

ZF(G) ∈ F.

1.8 The F-projector.

Definition 1.8.1. Let F be a class of groups. A subgroup U of a group G is called an F-projector

if UK/K is F-maximal in G/K for all K �G.

Denote the set of all X-projectors of G by ProjX(G), where X is a class of groups.

Definition 1.8.2. Let B be the class of primitive groups. A subclass H of B is called B-

projective if ProjH(G) 6= ∅ for all G ∈ B.
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Definition 1.8.3. A Schunck class X is a class of finite groups if it satisfies the following

conditions:

(i) If N / G and G ∈ X, then G/N ∈ X.

(ii) If N / G, G/N ∈ X and G/N is a primitive group, then G ∈ X.

Saturated formations are Schunck classes.

Definition 1.8.4. A B-Schunck class is a Schunck class contained in B.

As mentioned in [23], Förster proved that B-projective classes can be characterised in terms of

B-Schunck classes.

Theorem 1.8.5. [23, III, Theorem 3.10] A class h is B-projective if and only if it is a B-

Schunck class.

Hence saturated formations are B-projective. Results on projectors are presented below.

Theorem 1.8.6. [23, III, Proposition 3.7] Let F be a homomorph. If N � G, such that N ≤

V ≤ G, U is an F-projector of V and V/N is an F-projector of G/N , then U is an F-projector

of G.

The next result shows a sufficient condition for an F-maximal of a group G to be an F-projector

of G.

Lemma 1.8.7. [23, III, Lemmas 3.14 and 3.18] Let F be a saturated formation. Let G = HN

where H is an F-maximal subgroup of G. If N is either nilpotent or a direct product of non-

abelian simple groups and N is normal in G, then H is an F-projector of G.

Theorem 1.8.8. [23, IV, Theorem 1.14] Let K be a nilpotent normal subgroup of a finite group

G and let G = WK. Then W ∈ qr0(G).

Let F be a saturated formation. The result below shows the relationship between an abelian

F-residual and F-projectors of a group.
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Theorem 1.8.9. [23, IV, Theorem 5.18] Let F be a saturated formation, let R denote the F-

residual of a group G, and assume that R is abelian. Then R is complemented in G and each

subgroup which complements R in G is an F-projector of G.

Theorem 1.8.10. [23, IV, Theorem 6.14] Let F be a local formation and G be a group. If U

is an F-maximal subgroup of G such that G = UGF (in particular if U is an F-projector of G),

then

ZF(G) = CU(GF).

1.9 Representation of Groups

Definition 1.9.1. Let R be a ring. A left R-module is an abelian group M together with a map

(a,m) � am of R×M into M satisfying the following properties:

(i) a(m+ n) = am+ an

(ii) (a+ b)m = am+ bm

(iii) (ab)m = a(bm)

(iv) 1m = m

for m,n ∈M and a, b ∈ R. The map R×M −→M is referred to as scalar multiplication.

The notion of a right R-module is dual to that of a left R-module. When R is commutative for

example a field, there is no distinction between left and right modules. Every abelian group is

a Z-module.

Let V be a vector space over a field F of dimension n. The general linear group of dimension n

is the group of n× n invertible matrices with coefficients in F , together with the operation of

matrix multiplication. It is denoted by GL(n, F ). The general linear group can also be regarded

as the set of all bijective linear transformations of V with composition of functions as the group

operation, denoted GL(V ). If a fixed basis for V is chosen, each linear transformation of V is

associated with an n× n matrix over F , and GL(n, F ) ∼= GL(V ).

A scalar matrix is a diagonal matrix which is a constant times the identity matrix. Scalar ma-

trices are in the centre of GL(n, F ). Hence a scalar transformation is a linear transformation
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corresponding to a scalar matrix with respect to the isomorphism.

Definition 1.9.2. Let V be a vector space over a field F . A homomorphism φ of a group G into

the group GL(V ) is called a representation of G. The vector space V is called a representation

module for G.

Kerφ is called the kernel of the representation. If φ is injective, that is, kerφ = 1, then φ is a

faithful representation.

Theorem 1.9.3. [27, Theorem 2.6.1] If the elementary abelian p-group H is regarded as a

vector space over Zp, then Aut (H) is isomorphic to the group GL(H).

If H is normal, then there is a homomorphism from G into GL(H). So H becomes a represen-

tation module for G and hence for subgroups of G.

Let φ be a faithful representation of G on a vector space V over a field F . If K is a sub-

group of G inducing scalar transformations on V , then it is in the centre of G.

The fundamental results in this thesis have been presented in this chapter. In the next chapter

results on totally and mutually permutable products of finite groups will be presented.
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Chapter 2

Totally and Mutually Permutable

Products of Finite Groups

The concept of a formation was presented in Chapter 1. In this chapter results on totally

permutable and mutually permutable products in the framework of formations are presented.

These results, which is a theory developed for over 20 years, are taken from [2-14, 16-20, 22,

24-25, 29, 33]. For many results on totally permutable products which do not hold for mutually

permutable products, proofs are given. The results and proofs presented in this chapter will help

in generating new ideas in Chapter 3 where we attempt to extend results on totally permutable

products to weakly totally permutable products. These results will also be used in Chapter 4

where results on products of finite groups in the framework of Fitting classes are presented.

The first results are fundamental results on products of finite groups.

Theorem 2.0.4. [4, Theorem 7.5.7] Let the finite group G = AB be the product of two sub-

groups A and B. If H is a subgroup of A ∩ B which is subnormal in both A and B, then H is

subnormal in G.

Lemma 2.0.5. [29, Lemma 1] Let 〈x〉〈y〉 be the product of cyclic groups 〈x〉 and 〈y〉 of a

group G. If |G| 6= 1 and |〈x〉| ≥ |〈y〉|, then 〈x〉 contains a non-trivial normal subgroup of G.

Moreover, G is supersoluble.

Lemma 2.0.6. [12, Lemma 1] Let the group G = NB be the product of subgroups N and B.

Suppose that N is normal in G. Since B acts by conjugation on N , the semidirect product
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X = [N ]B can be constructed, with respect to this action. Then the natural map α : X → G

given by (nb)α = nb, for every n ∈ N and every b ∈ B, is an epimorphism, Ker α∩N = 1 and

Ker α ≤ CX(N).

2.1 Totally Permutable Products

In this section the result that the supersoluble residual of a factor centralises the other factor

when G is a totally permutable product of two subgroups is presented. The first result below

shows that factor groups of totally permutable products are also totally permutable products.

Lemma 2.1.1. Let a group G = AB be the totally permutable product of subgroups A and B.

If N is a normal subgroup of G, then G/N is the totally permutable product of subgroups AN/N

and BN/N .

Proof. Let XN/N be a subgroup of AN/N and Y N/N be a subgroup of BN/N . Then there

exist subgroups H ≤ A and K ≤ B such that HN = X and KN = Y . Since H permutes with

K, it follows that HN/N permutes with KN/N = Y/N . Hence the result follows.

R. Maier in [29] proved the following two lemmas.

Lemma 2.1.2. [29, Lemma 2(a)] Let a group G = AB be the totally permutable product of

subgroups A and B. Then the product CoreG(A)CoreG(B) 6= 1.

Lemma 2.1.3. [29, Lemma 2(b)] Let a group G = AB be the totally permutable product of

subgroups A and B. Then the subgroup A ∩B is a nilpotent subnormal subgroup of G.

Proof. Let H be a subgroup of A ∩ B. By definition H is a permutable subgroup and hence

a subnormal subgroup in both A and B. By Theorem 2.0.4, H is a subnormal subgroup of

AB = G. So H is a subnormal subgroup of A ∩ B. It follows from Theorems 1.2.7 and 2.0.4

that A ∩B is a nilpotent subnormal subgroup of G.
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Lemma 2.1.4. [12, Lemma 2] Let a group G = NB be the totally permutable product of

subgroups N and B. Suppose N is a minimal normal subgroup of G.

(a) If N is abelian, then N is a cyclic group of prime order.

(b) If N is non-abelian, then B centralizes N .

Proof. (a) Assume that N is abelian. Then N is a p-group for some prime p. Let P be a Sylow

p-subgroup of B. Then NP is a p-group and N is a normal subgroup of NP . So N∩Z(NP ) 6= 1

by Lemma 1.2.8. Let g ∈ N ∩Z(NP ) be an element of order p. Then 〈g〉 is normal subgroup of

P . Consider a Sylow q-subgroup Q of B, for some prime q 6= p. Then Q〈g〉 is a subgroup and

since 〈g〉 is subnormal in G, it is a subnormal Sylow p-subgroup of Q〈g〉. So 〈g〉 is normalized

by Q〈g〉. Hence 〈g〉 is a normal subgroup of G and N = 〈g〉 is a cyclic group of prime order.

(b) Suppose that N is non-abelian. By Lemma 2.1.3, N ∩B is a nilpotent subnormal subgroup

of G. In particular, N∩B ≤ F (N) = 1. Let X ≤ N . Then X = X(N∩B) = N∩BX�BX. So

B normalizes every subgroup of N . By Lemma 1.1.2, [N,B] ≤ Z(N) = 1. Hence B centralizes

N .

Lemma 2.1.5. [12, Lemma 3] Let the group G = AB be the totally permutable product of

subgroups A and B. If A ∩B = 1, then [A,B] is contained in F (G).

Proof. By Theorem 1.3.1 it is sufficient to prove that [A,B] centralizes all chief factors of a chief

series. The proof is by induction on |G|. By Lemma 2.1.2 either A or B contains a non-trivial

minimal normal subgroup of G. Assume that there exists a minimal normal subgroup N of G

such that N ≤ A. Consider a chief series of G that passes through N . By Lemma 2.1.1 G/N

is the totally permutable product of subgroups AN/N and BN/N . So [A,B]N/N centralizes

all chief factors H/K of G such that N ≤ K.

What is left is to show that [A,B] centralizes N . Suppose N is non-abelian. Then N is direct

product of isomorphic non-abelian simple groups N1×N2× ...×Nn. Since these factors Ni are

characteristic subgroups of N , Ni is a minimal normal subgroup of NB. Since BNi is a totally

permutable product of B and Ni, B centralizes Ni by Lemma 2.1.4. Hence B centralizes N .

Since N is normal in G, N centralizes 〈BG〉 = B[A,B]. Therefore [A,B] centralizes N .

Suppose N is abelian. Then N is an elementary abelian p-group for some p. So N can be viewed

as a G/CG(N)-module over the field with p elements. Note that N∩B ≤ A∩B = 1. Let X ≤ N .
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Then X = X(N ∩ B) = N ∩ BX � BX. This implies B normalizes every subgroup of N . So

linear transformations induced by BCG(N)/CG(N) must be scalar. Therefore BCG(N)/CGN

centralizes ACG(N)/CG(N) and so [A,B] ≤ CG(N). Hence the result follows.

Lemma 2.1.6. [12, Lemma 7] Let the group G = AB be the totally permutable product of

subgroups A and B. Assume A ∩B = 1 and F (G) = Op(G) for some prime p. Then :

(a) [Op(A), Op(B)] = 1, and

(b) Op(A) normalizes each p-subgroup of B.

Proof. (a) Let q and r be two primes such that p 6= q and p 6= r. Let Q be a Sylow q-subgroup of

A and let R be a Sylow r-subgroup of B. Since QR is a totally permutable product of subgroups

Q and R, it follows that [Q,R] ≤ [A,B] ≤ F (G) by Lemma 2.1.5. Since F (G) = Op(G), [Q,R]

is a p-group. But QR is a subgroup of G so [Q,R] ≤ QR which is a π-group where π = {q, r}.

So [Q,R] = 1. Since Op(A) = 〈Q | Q is a Sylow q-subgroup of A, q 6= p〉 it follows that

[Op(A), Op(B)] = 1 as required.

(b) Let P be a p-subgroup of B and let Q be a Sylow q-subgroup of A, where q is a prime

dividing |A| and q 6= p. Then QP is the totally permutable product of Q and P . So QP is a

subgroup of G. Since [Q,P ] ≤ [A,B] ≤ F (G) = Op(G), [Q,P ] is a p-subgroup and it is also

normal in QP . So [Q,P ] ≤ P since P is a Sylow p-subgroup of QP . Hence Q normalizes P .

So [Q,R] = 1. Since Op(A) = 〈Q | Q is a Sylow q-subgroup of A, q 6= p〉, the result follows.

The following result proved by Maier [29] extends Asaad and Shaalan’s result in [5].

Theorem 2.1.7. [29, Theorem] Let F be a saturated formation containing U. Let a group

G = AB be the totally permutable product of A and B. If A and B belong to F, then G also

belongs to F.

Proof. Suppose the theorem is not true and let G be a minimal counterexample. Then G sat-

isfies the following conditions:

(i) There exists a unique abelian minimal normal subgroup N of G and Φ(G) = 1, that is,

G is a primitive group of type 1 and F (G) = CG(N) = N .
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Suppose there exists two minimal normal subgroups N1 and N2 of G. Then G/N1 and G/N2

belong to F and hence G/(N1 ∩N2) ∼= G ∈ F which is a contradiction. Hence G has a unique

minimal normal subgroup N . Since F is a saturated formation, it is clear that Φ(G) = 1.

By Lemma 2.1.2 and the uniqueness of N , assume that N ≤ A. Suppose that N is non-

abelian. Then N is the direct product of non-abelian simple groups. Since N is unique,

F (G) = 1 = CG(N). By Lemma 2.1.3, A ∩ B ≤ F (G) = 1. So A ∩ B = 1. Since N ≤ A,

N ∩ B = 1 and B permutes with every subgroup of N . If X ≤ N , then X = XB ∩N �XB,

so B normalizes X. By Lemma 1.1.2, [N,B] ≤ Z(N) = 1, that is, 1 6= B ≤ CG(N) = 1, a

contradiction. Hence N is abelian.

Therefore by Theorem 1.5.4 G is a primitive group of type 1. Now Oq(G) = 1 for all primes

q 6= p and Op(G) ≤ F (G) ≤ CG(N) = N . Hence F (G) = CG(N) = N . Let M be the stabiliser

of G. So MN = G and M ∩N = 1.

(ii) |N | > p, N is complemented by V = A ∩M in A and A ∩B = 1.

If |N | = p, then G/CG(N) is abelian of exponent p − 1. So G/CG(N) ∈ U(p) ⊆ F (p), where

U(p) and F (p) are canonical local definitions for U and F. Hence G ∈ U ⊆ F, a contradiction.

Therefore |N | > p.

Now V ∩ N = (A ∩M) ∩ N ≤ M ∩ N = 1. Also V N = (A ∩M)N = A ∩ G = A. Hence N

is complemented by V in A. Suppose A ∩ B 6= 1. Then by Lemma 2.1.3 A ∩ B ≤ F (G) = N .

So A ∩ B = N ∩ B � B. Now (A ∩ B)V = V (A ∩ B) if A ∩ B is regarded as a subgroup

of B. So A ∩ B = N ∩ (A ∩ B)V � (A ∩ B)V . Since N is abelian A ∩ B is a normal sub-

group of A. Hence A ∩ B = N . Then N ≤ B and N is complemented by W = M ∩ B. Let

H ≤ N . Then H = V H ∩N �V H and H = WH ∩N �WH. Hence H� (V H)N = G. There-

fore N must be cyclic of order p which contradicts the first part of (ii). Hence the result follows.

(iii) B normalizes all subgroups of N and B centralizes V a, a ∈ A.

Since N ∩ B = 1, it follows that Y = Y (N ∩ B) = N ∩ BY � BY for all Y ≤ N . Hence

B normalizes every subgroup of N . Also [A,B] ≤ F (G) ≤ N by Lemma 2.1.5. Let a ∈ A. So

[B, V a] ≤ N . But BV a is a subgroup hence [B, V a] ≤ BV a. Therefore [B, V a] ≤ BV a ∩N = 1
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and the result follows.

(iv) V is a maximal subgroup of A and N is a minimal normal subgroup of A.

Let X ≤ N be a normal subgroup of A. Since B normalizes X by (iii), X is a normal

subgroup of G. Hence X = N and so N is a minimal normal subgroup of A. Since A = NV

andN is an abelian minimal normal subgroup of A, it follows that V is a maximal subgroup of A.

(v) Final contradiction.

Since B centralizes V a and A = 〈V a | a ∈ A〉, it follows that B centralizes A. By (ii),

G = A×B and hence G ∈ F, our final contradiction.

The converse of Theorem 2.1.7 was proved by Ballester-Bolinches and Pérez-Ramos in [12].

Theorem 2.1.8. [12, Lemma 4] Let F be a saturated formation containing U. Let a group

G = AB be the totally permutable product of subgroups A and B. If G belongs to F, then A

and B belong to F.

Proof. The proof is by induction on |G|. If G has two minimal normal subgroups N1 and N2,

then G/N1 ∈ F and G/N2 ∈ F. So both AN1/N1
∼= A/(A ∩ N1) and AN2/N2

∼= A/(A ∩ N2)

belong to F which implies that A/(A ∩ N1 ∩ N2) ∼= A belong to F. The same applies for B.

Hence assume that G has a unique minimal normal subgroup N and the subgroups AN/N and

BN/N are in F. So either N ⊆ Φ(G) or N * Φ(G).

(i) N ⊆ Φ(G).

Then N is abelian. Since AN/N ∼= A/(A ∩N) ∈ F, it follows that AF ≤ A ∩N is abelian and

by Theorem 1.8.9, A = (A ∩N)F , where F is an F-projector of A. So G = (A ∩N)FB = FB

and A ∩ G = A ∩ FB = F (A ∩ B). Now A = F (A ∩ B) is a totally permutable product of

subgroups F and A∩B and A∩B ≤ F (G) ∈ U ⊆ F by Lemma 2.1.3. Hence A ∈ F by Theorem

2.1.7. The same applies for B.

(ii) N * Φ(G).

If N is non-abelian, then A ∩ B ≤ F (G) = 1. By Lemma 2.1.5, [A,B] ≤ F (G) = 1. Hence
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G = A×B and the result follows.

Assume N is abelian. Then by Theorem 1.5.4 G is a primitive group of type 1. Let M be the

stabilizer of G. Then M is a maximal subgroup of G such that G = NM , M ∩ N = 1 and

CoreG(M) = 1. By Lemma 2.1.2 assume that N ≤ A. Let U = M ∩ A. Then A = NU and

N ∩U = 1. Since A∩B ≤ F (G) = N by Lemma 2.1.3 and Theorem 1.5.4, A∩B = N ∩B�B.

If T ≤ N ∩ B, then T = TU ∩ N � TU and T = TK ∩ N � TB. This implies that A and B

normalize every subgroup of A∩B. In particular either A∩B = 1 or A∩B = N . If A∩B = N ,

then N is a group of order p for some prime p. Therefore A/CA(N) ∈ U(p) ⊆ F (p), where

U and F are the canonical local definitions of U and F, respectively. Since A/N ∈ F, A ∈ F.

With the same argument B ∈ F.

If A ∩ B = 1, then N ∩ B = 1. Let K ≤ N . Then K = KB ∩N �KB. Hence B normalizes

every subgroup of N . This implies that N is a minimal normal subgroup of A. Since N is

abelian, U is a maximal subgroup of A. If x ∈ N , then [Ux, B] ≤ F (G) ∩ UxB = 1. If N = A,

then A is abelian hence it belongs to F. If N < A, then since H = 〈U,Ux〉 it follows that

B ≤ CG(〈U,Ux〉) = CG(H). Therefore G = A×B and the result follows.

Theorem 2.1.9. [12, Lemma 5] Let a group G = AB be the totally permutable product of

subgroups A and B. If B is supersoluble, then GU = AU.

Proof. Since G/GU is supersoluble, it follows that AGU/GU ∼= A/(A ∩ GU) is supersoluble by

Theorem 2.1.8 and so AU ≤ GU. The proof is by induction on |G|. Let N be a minimal normal

subgroup of G. Then G/N satisfies the hypothesis. So (G/N)U = GUN/N = AUN/N . Hence

GUN = AUN . Since GU = GU ∩ AUN = AU(GU ∩ N) it follows that N ≤ GU for any minimal

normal subgroup N of G and GU = AUN . By Lemma 2.1.2 there exists a minimal normal

subgroup N of G such that N ≤ A or N ≤ B. If N ≤ AU, then the result follows.

If N ≤ A, then GU ≤ A and N ≤ NG(AU) since AU is normal in A. So AU �GU. Suppose N is

non-abelian. Then N is the direct product of non-abelian simple groups. But GU/AU ≤ A/AU

is supersoluble and GU/AU = AUN/AU ∼= N/(N ∩ AU). So N/N ∩ AU is supersoluble which

implies that N = N ∩ AU. Hence N ≤ AU and GU = NAU = AU.

Suppose N is abelian. Then N is a p-group. Suppose there exists a Sylow q-subgroup Q

of GU for some prime q 6= p. Then Q ≤ AU and G = GUNG(Q) by Theorem 1.1.1. Hence

1 6= 〈QG〉 = 〈QGU〉 ≤ AU. This means there exists a minimal normal subgroup of G which is
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a subgroup of AU and the result follows. Assume that GU is a p-group. If Φ(GU) 6= 1, then

GU = Φ(GU)AU = AU since Φ(GU) � G. Therefore Φ(GU) = 1 and by Theorem 1.4.2 GU is

abelian. So G is soluble. Consider A = AUU , where U is an U-projector of A by Theorem 1.8.5.

Then G = AB = AU(UB) = GU(UB) since AU ≤ GU. By Theorem 2.1.7 UB is supersoluble.

Since GU is abelian, there exists an U-projector M of G such that UB ≤ M and M ∩ GU = 1

by Theorem 1.8.9. Hence GU = GU ∩ AUUB = AU(GU ∩ UB) = AU and the result follows.

Assume N ≤ B. Since B is supersoluble, N is abelian. If AN < G, then by induction

(AN)U = AU. In particular N normalizes AU and so AU �GU. The result follows arguing as in

the case where N ≤ A. Assume that AN = G. Then G is the totally permutable product of

subgroups N and A and A is a maximal subgroup of G since N is abelian. By Lemma 2.1.4

N is a cyclic group of order p for some prime p. Hence A/CA(N) is supersoluble which implies

AU ≤ CA(N). If CoreG(A) 6= 1, then there exists a minimal normal subgroup of A and the

result follows by arguing as in the case where N ≤ A. If CoreG(A) = 1, then CA(N) = 1.

Moreover since N * Φ(G), G is a primitive group of type 1. Hence AU ≤ CA(N) = 1 and A is

supersoluble. Therefore G is supersoluble by Theorem 2.1.7 and the result follows.

Lemma 2.1.10. [12, Lemma 6] Let a group G = AB be the totally permutable product of

subgroups A and B. Then AU and BU are normal subgroups of G.

Proof. Let q be a prime dividing |G| and let Q be a Sylow q-subgroup of B. Since A permutes

with every subgroup of B, AQ is a subgroup of G. By Lemma 2.1.9 (AQ)U = QU since Q is

nilpotent hence supersoluble. This implies that AU is a normal subgroup AQ for every Sylow

subgroup Q of B. Hence AU is a normal subgroup of AB = G. Analogously BU is a normal

subgroup of G.

Lemma 2.1.11. [12, Lemma 8] Let a group G = AB be the totally permutable product of

subgroups A and B. If B is supersoluble, then B centralizes GU.

Proof. By Theorem 2.1.9, GU = AU. Suppose the lemma is not true and let (G,B) be a coun-

terexample with |G|+ |B| minimal. Then G satisfies the following properties:

(i) B is a cyclic group of prime power order.
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Let M be a maximal subgroup of B. Then AM is the totally permutable product of subgroups

A and M and (AM)U = AU by Lemma 2.1.9. Since |MA| + |M | < |G| + |B| it follows that

[AU,M ] = 1. If M1 and M2 are two maximal subgroups of B, then B = 〈M1,M2〉 ≤ CG(AU)

which is a contradiction. Therefore B has a unique maximal subgroup. This means that B is

a cyclic group of prime power order.

(ii) G has a unique minimal normal subgroup N and N ≤ AU = GU.

Let N be a minimal normal subgroup of G. Then G/N is the totally permutable product

of subgroups AN/N and BN/N and BN/N is supersoluble. Since |G/N | < |G| it follows that

BN/N ≤ CG/N(GUN/N). So if N1 and N2 are two minimal normal subgroups of G, then

[B,GU] ≤ N1 ∩ N2 = 1, which is a contradiction. Hence G has a unique minimal normal sub-

group N . Since AU = GU is a normal subgroup of G, N ≤ AU.

(iii) B is a cyclic group of prime order.

Let M be the unique maximal subgroup of B. Assume that M 6= 1. Since |AM | + |M | <

|G|+ |B|, it follows that M ≤ CG(AU). Let H be an U-projector of A by Theorem 1.8.5. Then

A = HAU. Since HB is the totally permutable product of subgroups H and B, HB is supersol-

uble by Theorem 2.1.7. Also G = AB = AU(HB). Let U be a U-maximal subgroup of G such

that HB ≤ U . Then G = UAU. From Theorem 1.8.10, ZU(G) = CU(GU). Hence ZU(G) is a

non trivial normal subgroup of G since 1 6= M ≤ ZU(G). Since N is unique in G it follows that

N ≤ ZU(G) which means that ZU(G/N) = ZU(G)/N . Since G = UAU, G/N = (AU/N)(UN/N)

and (G/N)U = AU/N by Lemma 2.1.9. Let U1/N be a U-maximal subgroup of G/N containing

UN/N . By Theorem 1.8.10, ZU(G)/N = ZU(G/N) = CU1/N(AU/N). Since |G/N | < |G| it

follows that BN/N ≤ ZU(G)/N and so B ≤ ZU(G) = CG(GU) which is a contradiction. Hence

M = 1 and therefore B is a cyclic group of prime order.

(iv) Final contradiction.

Let |B| = p for some prime p. Suppose B is a subgroup of A. Then B is permutable in
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A.

If CoreG(B) 6= 1, then B is a normal subgroup of G. Since |B| = p and N is unique in G, it

follows that B ≤ ZU(G) ≤ CG(AU), a contradiction.

Suppose CoreG(B) = 1. Since B is permutable in G, B ≤ Z∞(G) by Theorem 1.7.6. Hence

B ≤ Z∞(G) ≤ ZU(G) ≤ CG(GU), is a contradiction.

Assume that B is not a subgroup of A. Then A ∩ B = 1 and by Lemma 2.1.5 [A,B] ≤ F (G).

If [A,B] = 1, then the result follows. So 1 6= [A,B] ≤ F (G). If q and r are two primes dividing

|F (G)|, then Oq(G) 6= 1 and Or(G) 6= 1 which contradicts the uniqueness of N . So F (G) is a

q-group for some prime q. If q = p, then Oq(A) ≤ NG(B) by Lemma 2.1.6(b). Since A/Oq(A)

is a q-group, AU ≤ Oq(A). It follows that [B,AU] ≤ A. Hence [B,AU] = A ∩ B = 1 which

implies B centralizes AU, a contradiction. Therefore q 6= p. By Lemma 2.1.6(i) and the fact

that Oq(B) = B it follows that [Oq(A), Oq(B)] = [Oq(A), B] = 1, that is, B centralizes Oq(A).

Since AU ≤ OqA, B centralizes AU, our final contradiction.

The main result of this section can now be presented. This result was proved by Ballester-

Bolinches et al. in [10].

Corollary 2.1.12. [10, Corollary] Let G = AB be the totally permutable product of subgroups

A and B. Then [A,BU] = [AU, B] = 1.

Proof. Suppose the corollary is not true and let G be a counterexample with |G|+ |B| minimal.

Let M be a maximal subgroup of B. Then AM is the totally permutable product of subgroups

A and M . By the choice of G, it follows that M ≤ CG(AU). Let M1 and M2 be two distinct

maximal subgroups of B. So B = 〈M1,M2〉 ≤ CG(AU), a contradiction. Hence B has a unique

maximal subgroup. This means that B is a cyclic group of prime power order. By Lemma

2.1.11 B centralizes AU, our final contradiction.

2.2 Pairwise Totally Permutable Products

In this section results on pairwise totally permutable products in the framework of formation

theory are presented.
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Lemma 2.2.1. [22, Lemma 1] Let a group G = G1G2...Gn be the pairwise totally permutable

product of subgroups G1, G2, ..., Gn.

(a) Then there exists i ∈ {1, 2, ..., n} such that Gi contains a non-trivial normal subgroup of G.

(b) For every i, j ∈ {1, 2, ..., n}, i 6= j, Gi ∩Gj ≤ F (GiGj).

Proof. (a) Let p be the largest prime dividing |G|. Then p divides one of |G1|, |G2|, ..., |Gn|. Let

x be a p-element of the union set G1∪G2∪...∪Gn of maximal order. Assume that x ∈ G1. Since

〈x〉 is cyclic there exists a unique subgroup R of order p in 〈x〉. Note that R is a characteristic

subgroup of every non-empty subgroup of 〈x〉. Let y be a q-element of Gi, where q is a prime

and i ∈ {2, ..., n}. Since G1 and G2 are totally permutable the subgroup 〈x〉〈y〉 is a supersoluble

group by Lemma 2.0.5.

If q 6= p, then 〈x〉 is a Sylow p-subgroup of 〈x〉〈y〉. Since p > q, 〈x〉 is a normal subgroup by

Theorem 1.2.5. If q = p, then |〈x〉| ≥ |〈y〉| and by Lemma 2.0.5 there exists a non-trivial normal

subgroup of 〈x〉〈y〉 contained in 〈x〉. So R is a characteristic subgroup of that normal subgroup

contained in 〈x〉. So in both cases, the unique subgroup R of order p in 〈x〉 is normalised by y.

Since y is an arbitrary element of prime power order of Gi, Gi normalizes R for all i ∈ {2, ..., n}.

Hence the normal closure

〈RG〉 = 〈RG1G2...Gn〉 = 〈RG2G3...GnGn〉 = RG1 ≤ G1

is a non-trivial normal subgroup of G contained in G1. Hence the result follows.

(b) By Lemma 2.1.3 Gi ∩ Gj is a nilpotent subnormal subgroup of GiGj and hence the re-

sult follows.

Lemma 2.2.1(a) extends Lemma 2.1.2 to any finite number of factors.
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Lemma 2.2.2. [11, Lemma 1] Let F be a formation containing U. Consider a group G =

G1G2...Gn which is the pairwise totally permutable product of subgroups G1, G2, ..., Gn. Then

GF
i is a normal subgroup of G for all i ∈ {1, 2, ..., n}.

Proof. Since Gi/G
U
i ∈ U ⊆ F it follows that GF

i ≤ GU
i . By Corollary 2.1.12 GF

i centralizes

G2G3...Gn. Since GF
i is a normal subgroup of Gi, G

F
i is a normal subgroup of G.

Lemma 2.2.3. Let a group G = G1G2...Gn be the pairwise totally permutable product of sub-

groups G1, G2, ..., Gn. If Gi is supersoluble for all i ∈ {1, 2, ..., n}, then G is supersoluble.

Proof. Suppose the lemma is not true and let G be a minimal counterexample. Since U is a

saturated formation it follows that G has a unique minimal normal subgroup N and Φ(G) = 1.

By Lemma 2.2.1 there exists i ∈ {1, 2, ..., n} such that N ≤ Gi. Assume that N ≤ G1. Since

G1 is supersoluble, N is an abelian p-group for some prime p. So G is soluble. By Theorem

1.5.4 G is a primitive group of type 1. Let M be the stabilizer of G. Then Op(M) = 1 by

Theorem 1.5.4. Hence N is the Sylow p-subgroup of G. Let M ∩G1 = H1. Then N ∩H1 = 1

and H1N = G1 and H1 is a p′-subgroup of G1. Moreover for all i ∈ {2, 3, ...., n} either Gi = Hi

or there exists a Hall p′-subgroup Hi of Gi. In particular Hi ∩ N = 1 for all i ∈ {2, 3, ..., n}.

Hence H1H2...Hn is a Hall p′-subgroup of G and N(H1H2...Hn) = G. Suppose N ∩Gi 6= 1 for

some i ∈ {2, 3, ..., n}. Assume that N ∩ G2 6= 1. Let X ≤ N ∩ G2 be a cyclic group of prime

order. Then X = X(H1 ∩ N) = XH1 ∩ N � XH1. Moreover X = XHi ∩ N � XHi for all

i ∈ {2, 3, ..., n}. Hence H1H2...Hn normalizes N . Since N is abelian, X is a normal subgroup

of G and hence N = X is a cyclic group of order p. Now G/CG(N) is abelian of order p − 1.

This implies G is supersoluble, a contradiction. Therefore N ∩ Gi = 1 for all i ∈ {2, 3, ..., n}.

If T ≤ N , then T = GiT ∩ N � GiT for all i ∈ {2, 3, ..., n}. So G2G3...Gn normalizes T . On

the other hand T = H1T ∩N �H1T . Since N is abelian T is a normal subgroup of G and N

is cyclic of prime order. This implies G is supersoluble, which is our final contradiction.

Lemma 2.2.3 is generalised to any formation containing U in the following result.
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Theorem 2.2.4. [11, Theorem 1] Let F be a formation containing U. Consider a group G =

G1G2...Gn which is the pairwise totally permutable product of subgroups G1, G2, ..., Gn. If for

all i ∈ {1, 2, ..., n} the subgroups Gi are in F, then G ∈ F.

Proof. Suppose the theorem is not true and let G be a counterexample with |G|+ |G1|+ |G2|+

...+ |Gn| minimal. By Lemma 2.2.3 there exists i ∈ {1, 2, ..., n} such that Gi does not belong to

U. Assume that GU
1 6= 1. By Lemma 2.1.11 GU

1 centralizes K = G2G3...Gn. Since this implies

that GU
1 is a normal subgroup of G, it follows that GU

1 centralizes 〈KG〉. Moreover, G1 = GU
1U ,

where U is an U-projector of G1 by Theorem 1.8.5. Consider UK. Now UK is the pairwise

totally permutable product of subgroups U,G2, G3, ....., Gn. So

|UK|+ |U |+ |G2|+ |G3|+ ...+ |Gn| < |G|+ |G1|+ |G2|+ ...+ |Gn| and UK ∈ F. Since 〈KG〉 is

a normal subgroup of G, G1 acts on 〈KG〉 by conjugation. Let Y = [〈KG〉]G1 be the semidirect

product of 〈KG〉 and G1 with respect to this action. By Lemma 2.0.6 there is an epimorphism

from Y onto G. So G is isomorphic to a factor group of Y . So it is sufficient to show that Y

belongs to F.

Since GU
1 centralizes 〈KG〉 it follows that 〈KG〉 = 〈KU〉 ≤ UK which belongs to F. So Y/GU

1
∼=

[〈KG〉](U/(U ∩ GU
1 )), which is a factor group of [〈KG〉]U . By Lemma 2.0.6 there exists an

epimorphism ψ from [〈KU〉]U onto UK. So [〈KU〉]U/〈KU〉 is isomorphic to U ∈ U ⊆ F. Hence

[〈KU〉]U/(Ker ψ ∩ U) ∼= [〈KU〉]U ∈ F since 〈KU〉∩Ker ψ = 1 by Lemma 2.0.6. So Y/GU
1 ∈ F.

On the other hand Y/〈KG〉 is isomorphic to G1 ∈ F. Therefore Y ∼= Z/(〈KG〉 ∩ GU
1 ) ∈ F, a

contradiction. Hence the result follows.

The converse of Theorem 2.2.4 is not true in general (see [7, Example 5.2.6]). However the

following result will help in showing that the converse of Theorem 2.2.4 is true if F, containing

U, is either a saturated formation or a formation of soluble groups.

Lemma 2.2.5. [11, Lemma 2] Let F be a formation containing U. Consider a group G =

G1G2...Gn which is the pairwise totally permutable product of subgroups G1, G2, ..., Gn. If

G2, G3, ..., Gn and G belong to F, then G1 ∈ F.

Proof. If G1 is supersoluble, then the result follows. Assume that GU
1 6= 1. So G1 = GU

1U ,

where U is an U-projector of G1. By Lemma 2.2.2 GU
1 is a normal subgroup of G1. Hence U
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acts on GU
1 by conjugation. Let Y = [GU

1 ]U be the semidirect product of GU
1 and U with respect

to this action.

By Lemma 2.0.6 there is an epimorphism γ : Y −→ G1. So G1 is isomorphic to a quotient group

of Y . By Lemma 2.2.2 GU
1 is a normal subgroup of G. Let K = G2G3...Gn. Then G = GU

1 (UK).

Now UK is the pairwise totally permutable product of subgroups U,G2, G3, ..., Gn. Hence UK

belongs to F by Theorem 2.2.4. So UK acts on GU
1 by conjugation. Let X = [GU

1 ]UK be the

semidirect product with respect to this action. By Lemma 2.0.6 there exists an epimorphism

α : X −→ G with Kerα ∩ GU
1 = 1. Hence X/Kerα ∼= G belongs to F. On the other hand

X/GU
1
∼= UK ∈ F. Hence X/(Kerα ∩GU

1 ) ∼= X ∈ F.

By Corollary 2.1.12 GU
1 centralizes K. It follows that 〈KX〉 = 〈KU〉 ≤ KU . So 〈KX〉 is

contained in KU . Hence 〈KX〉 ∩ GU
1 = 1. Moreover X/〈KX〉 ∼= [GU

1 ](U/(〈KX〉 ∩ U)). Hence

[GU
1 ]U/(〈KX ∩ U) = Y belongs to F. Since Y/GU

1 = [GU
1 ]U/GU

1
∼= U is supersoluble,

Y/(〈KX〉 ∩GU
1 ∩ U) ∼= Y ∈ U. Hence Y ∈ F and so G1 ∈ F.

The next two results show that the converse of Theorem 2.2.4 holds when F is either a saturated

formation or a formation of soluble groups.

Theorem 2.2.6. [11, Theorem 2] Let F be a saturated formation containing U. Consider a

group G = G1G2...Gn which is the pairwise totally permutable product of subgroups G1, G2, ..., Gn.

If G ∈ F, then Gi ∈ F for all i ∈ {1, 2, ..., n}.

Proof. The proof is by induction on |G|. Assume that G has a unique minimal normal subgroup

N . Since G/N satisfies the theorem, GiN/N ∈ F for all i ∈ {1, 2, ..., n}. By Lemma 2.2.1 there

exists i ∈ {1, 2, ..., n} such that N ≤ Gi. Assume that N ≤ G1. Let j ∈ {1, 2, ..., n} such that

j 6= 1. Since GjN/N ∼= Gj/(N ∩ Gj) ∈ F it follows that Gj = Fj(Gj ∩ N), where Fj is an

F-projector of Gj by Theorem 1.8.5. So N ∩ Gj ≤ N ≤ G1 and Fj ≤ Gj. This means that

N ∩ Gj ≤ G1 ∩ Gj ≤ F (G1Gj) which is supersoluble. Hence Gj = Fj(Gj ∩ N) is the totally

permutable product of subgroups Fj ∈ F and N ∩Gj ∈ F. By Theorem 2.2.4 Gj ∈ F. Therefore

Gj ∈ F for all j ∈ {2, 3, ..., n}. The result follows by Lemma 2.2.5.
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Theorem 2.2.7. [11, Theorem 3] Let F be a formation of soluble groups containing U. Con-

sider a group G = G1G2...Gn which is the pairwise totally permutable product of subgroups

G1, G2, ..., Gn. If G ∈ F, then Gi ∈ F for all i ∈ {1, 2, ..., n}.

Proof. Suppose the theorem is not true and let G be a counterexample with |G|+ |G1|+ |G2|+

... + |Gn| minimal. Assume that there exists i ∈ {1, 2, ..., n} such that Gi does not belong

to U. Without loss of generality assume that GU
1 6= 1. If GU

1 ≤ Φ(G1), then G ∈ U ⊆ F, a

contradiction. So GU
1 is not contained in Φ(G1). Since G ∈ F, it follows that G is soluble.

In particular G1 is soluble and hence GU
1/(G

U
1 ∩ Φ(G1)) is soluble. So the Fitting subgroup

F/(GU
1 ∩ Φ(G1)) of GU

1/(G
U
1 ∩ Φ(G1)) is non-trivial. By Theorem 1.6.6 F is nilpotent since

F/(GU
1 ∩ Φ(G1)) is nilpotent. Note that F is subnormal in G since F � GU

1 � G. This implies

that F ≤ F (G). On the other hand F is a normal subgroup of G1 which is not contained in

Φ(G1). This means that there exists a maximal subgroup M of G1 such that F is not contained

in M . Hence G1 = FM and G = F (MG2G3...Gn) = F (G)(MG2G3...Gn). By Theorem 1.8.8,

MG2G3...Gn ∈ F since a formation is qr0 closed. Consider J = MG2G3...Gn. Then J is the

pairwise totally permutable product of M,G2, G3, ..., Gn. Also

|J |+ |M |+ |G2|+ ...+ |Gn| < |G|+ |G1|+ |G2|+ ...+ |Gn|.

By the choice of G it follows that G2, G3, ..., Gn belong to F. Using Lemma 2.2.5 it follows that

G1 ∈ F and hence the result follows.

2.3 Totally permutable products and formation subgroups

The first three results of this section were proved by Ballester-Bolinches, Pérez-Ramos and

Pedraza-Aguilera in [11].

Theorem 2.3.1. [11, Theorem 4] Let F be a formation containing U such that either F is

saturated or F is a formation of soluble groups. Consider a group G = G1G2...Gn which is the

pairwise totally permutable product of subgroups G1, G2, ..., Gn. Then GF = GF
1G

F
2 ...G

F
n.

Proof. The proof is by induction on |G|. If GF = 1 the result follows from Theorems 2.2.7 and

2.2.6. So assume that GF 6= 1. The factor group G/GF inherits the hypothesis of the theorem.
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Since G/GF ∈ F it follows that GiG
F/GF ∼= Gi/(Gi ∩ GF) belongs to F for all i ∈ {1, 2, ..., n}.

This means that GF
i ≤ GF for all i ∈ {1, 2, ..., n}. By Lemma 2.2.2 GF

i is a normal subgroup

of G for all i ∈ {1, 2, ..., n}. So the product H = GF
1G

F
2 ...G

F
n ≤ GF is a normal subgroup of

G. Let H = 1, then GF = 1 by Theorem 2.2.4. Assume that H 6= 1. Let N be a minimal

normal subgroup of G contained in H. Since G/N satisfies the hypothesis of the theorem

GF/N = (GF
1N/N)(GF

2N/N)...(GF
nN/N) by induction. Hence GF = GF

1G
F
2 ...G

F
nN = HN = H

and the result follows.

The result above generalises Theorems 2.2.6 and 2.2.7. The next two results show the rela-

tionship between the F-projectors of the factors and that of the product where the group is a

totally permutable product.

Theorem 2.3.2. [11, Theorem 5] Let F be a saturated formation containing U. Consider a

group G = G1G2...Gn which is the pairwise totally permutable product of subgroups G1, G2, ..., Gn.

If Ai is an F-projector of Gi for all i ∈ {1, 2, ..., n}, then the product A1A2...An is an F-projector

of G.

Proof. Suppose the theorem is not true and let G be a counterexample with

|G| + |G1| + |G2| + ... + |Gn| minimal. Assume Gi 6= 1 for all i ∈ {1, 2, ..., n}. By Lemma

2.2.1 assume that there exist a minimal normal subgroup N of G such that N ≤ G1. The

factor group G/N satisfies the hypothesis of the theorem. By the choice of G it follows that

(A1N/N)(A2N/N)...(AnN/N) = (A1A2...An)N/N is an F-projector of G/N .

Let C = (A1A2...An)N be a proper subgroup of G. Now C is the pairwise totally permutable

product of subgroups A1N,A2, ..., An. Suppose C is a proper subgroup of G. By Lemma 1.8.7

A1 is an F-projector of A1N . Since |C|+ |A1N |+ |A2|+ ...+ |An| < |G|+ |G1|+ |G2|+ ...+ |Gn|

it follows that A1A2...An is an F-projector of C. By Theorem 1.8.6 A1A2...An is an F-projector

of G which is a contradiction.

Hence G = C = (A1A2...An)N . Now G/N is isomorphic to a factor group of A1N,A2, ..., An

which belongs to F by Theorem 2.2.4. So GF ≤ N . Since GF is a normal subgroup of G and

N is a minimal normal subgroup of G it follows that GF = 1 or GF = N . If GF = 1, then

G ∈ F and Gi ∈ F for all i ∈ {1, 2, ..., n} by Theorem 2.2.6, a contradiction. Therefore GF = N .

Since A1A2...An ∈ F, there exists an F-maximal subgroup U of G such that A1A2...An ≤ U .
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But G = (A1A2...An)N = UN . Hence by Lemma 1.8.7 U is an F-projector of G. Also

U = (A1N)A2...An ∩ U = (A1(N ∩ U))A2...An is the pairwise totally permutable product of

subgroups A1(U∩N), A2, ..., An. Since U,A2, ..., An ∈ F it follows that A1(U∩N) ∈ F by Lemma

2.2.5. Since A1 is F-maximal in G1, it also follows that U ∩N ≤ A1. Hence U = A1A2...An is

an F-projector of G, our final contradiction.

Beidleman and Heineken [16] generalized Corollary 2.1.12 by showing that the nilpotent residual

of one factor centralizes the other factor when G is a torsion group. The finite case was proved

by Ballester-Bolinches et al. [7] using a different approach from that of Beidleman and Heineken.

Theorem 2.3.3. [7, Theorem 4.2.7] Let a group G = AB be the totally permutable product of

subgroups A and B. Then [AN, B] = [A,BN] = 1.

Corollary 2.3.4. [24, Lemma 3] Let a group G = AB be a totally permutable product of

subgroups A and B. Then [A,B] ≤ ZU(G) and A ∩B ≤ ZU(G).

Proof. By Theorem 2.3.1 GU = AUBU. Let A1 and B1 be U-projectors of A and B, respectively

using Theorem 1.8.5. Then A = A1A
U and B = B1B

U. Then [A,B] = [AUA1, B
UB1] =

[A1, B1] ≤ A1B1. Moreover, A1B1 is a U-projector of G by Theorem 2.3.2. But [A,B] ≤

〈AG〉 ∩ 〈BG〉 ≤ CG(AUBU) = CG(GU). It follows that [A1, B1] ≤ C(A1B1)(G
U) = ZU(G) by

Theorem 1.8.10.

Now (A ∩B)ZU(G)/ZU(G) ≤ Z(G/ZU(G)) = 1 which implies that A ∩B ≤ ZU(G).

The result below shows the generalisation of Corollary 2.3.4.

Lemma 2.3.5. [25, Lemma 3] Let the group G = G1G2...Gn be a pairwise totally permutable

product of subgroups G1, G2, ..., Gn. Then

[
∏

i∈I Gi,
∏

j∈J Gj] ≤ ZU(G)

for any I, J ⊆ {1, 2, ..., n} such that I ∩ J = ∅. In particular,

(
∏

i∈I Gi) ∩ (
∏

j∈J Gj) ≤ ZU(G).
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2.4 Mutually permutable products

In this section results on mutually permutable products are presented. Most of them will be

useful in Chapter 3 and Chapter 4.

Lemma 2.4.1. Let a group G = AB be the mutually permutable product of subgroups A and

B. Then G/N = (AN/N)(BN/N) is the mutually permutable product of subgroups AN/N and

BN/N .

Lemma 2.4.2. [7, Lemma 4.1.37] Let the group G = NB be a mutually permutable product of

subgroups N and B. Suppose that N is normal in G and N ∩ B = 1. Then B acts as a group

of power automorphisms on N .

Beidleman and Heineken proved the following structural results of mutually permutable prod-

ucts.

Lemma 2.4.3. [17, Lemma 1((ii), (vi)and (vii))] Let a group G = AB be the mutually per-

mutable product of subgroups A and B. Then

(i) if U is a normal subgroup of G, then (U ∩ A)(U ∩B) is also a normal subgroup of G,

(ii) if N is a non-abelian normal subgroup of G, then

{N ∩ A,N ∩B} ⊆ {N, 1} and N = (N ∩ A)(N ∩B),

(iii) if N is a minimal normal subgroup of G, then {N ∩ A,N ∩B} ⊆ {N, 1}.

(iv) if N is a normal subgroup of G such that A ∩ B ≤ N , then G/N is a totally permutable

product of subgroups AN/N and BN/N .

The following result generalises Lemma 2.4.3(i) and (ii):

Lemma 2.4.4. [6, Lemma 1(i) and Lemma 3] Let a group G = G1G2...Gn be the pairwise

mutually permutable product of subgroups G1, G2, ..., Gn. Then

(i) If U is a normal subgroup of G, then (U ∩G1)(U ∩G2)...(U ∩Gn) is a normal subgroup of

G,

(ii) if M is non-abelian minimal normal subgroup of G, then either M ∩Gi = 1 or M ≤ Gi for

all i ∈ {1, 2, ..., n}. Moreover there exists j ∈ {1, 2, ..., n} such that M ≤ Gj.
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Lemma 2.4.5. [17, Corollary 3] Let a group G = AB be the mutually permutable product of

subgroups A and B. If V is the maximal perfect normal subgroup of A, then V is a normal

subgroup of G.

Hence the soluble residuals of the factors A and B are normal subgroups of G, in a mutually

permutable product G = AB. In fact this is true for any finite number of factors as the following

result by Ballester-Bolinches et al. [6] shows.

Theorem 2.4.6. [6, Lemma 2] Let a group G = G1G2...Gn be the pairwise mutually permutable

product of subgroups G1, G2, ..., Gn. Then the soluble residuals of the factors Gi are normal

subgroups of G and their product is the soluble residual of G.

Lemma 2.4.7. [17, Lemma 2] Let a group G = AB be the mutually permutable product of

subgroups A and B and let N be a minimal normal subgroup of G. If N ∩A = N ∩B = 1, then

|N | = p for some prime p and either N ≤ CG(A) or N ≤ CG(B).

For pairwise totally permutable products it has been shown that one of the factors contains

a normal subgroup of the product for a product with a finite number n of factors (Theorem

2.2.1). For mutually permutable products this has been shown to be true when the number of

factors n = 2 by Beidleman and Heineken [18]:

Lemma 2.4.8. [18, Theorem 1] Let a group G = AB be the mutually permutable product of

subgroups A and B. Then CoreG(A)CoreG(B) 6= 1.

The following result was proved by Bochtler and the result was presented in [7].

Theorem 2.4.9. [7, Theorem 4.4.5] Let a group G = AB be the mutually permutable product

of subgroups A and B. Then the nilpotent residual BN of B normalizes A.

Theorem 2.4.10. [6, Lemma 1(iii)] Let a group G = G1G2...Gn be a pairwise mutually per-

mutable product of subgroups G1, G2, ..., Gn. Then G′i is a subnormal subgroup of G for all

i ∈ {1, 2, ..., n}.

Bochtler and Hauck in [20] showed that each of the subgroups A and B possess subnormal

subgroups of G when G = AB is a mutually permutable product:
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Theorem 2.4.11. [20, Theorem 2] Let a group G = AB be the mutually permutable product

of subgroups A and B. Then there exists subgroups L and M with the following properties:

(i) A′ ≤ L ≤ A, B′ ≤M ≤ B,

(ii) A ∩B ≤ L ∩M ,

(iii) L and M are subnormal in G,

(iv) G′ � LB ∩MA = LM .

Lemma 2.4.12. [2, Theorem 1] Let a group G = AB be the mutually permutable product of

supersoluble subgroups A and B. If CoreG(A ∩B) = 1, then G is supersoluble.

Bochtler generalized Lemma 2.4.12 to any saturated formation containing U.

Theorem 2.4.13. [7, Theorem 4.5.8] Let F be a saturated formation containing U. Consider

a group G = AB which is the mutually permutable product of subgroups A and B. If

CoreG(A ∩B) = 1, then GF = AFBF.

2.5 Products of groups and SC-groups

In this section results on groups in which chief factors are simple are presented.

Definition 2.5.1. A group G is an SC-group if all its chief factors are simple.

The SC-groups were introduced by Robinson [33]. The class of SC-groups contains U. In fact

a supersoluble group is a soluble SC-group.

Theorem 2.5.2. [7, Theorem 1.6.3] The class of all SC-groups is a formation which is neither

closed under taking subgroups nor saturated.

Robinson characterised SC-groups:

Theorem 2.5.3. [33, Proposition 2.4] A group G is an SC-group if and only if its soluble

residual GS is such that

(i) G/GS is supersoluble.
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(ii) GS/Z(GS) is a direct product of G-invariant simple groups.

(iii) there is a G-admissible series in Z(GS) with cyclic factors.

In general if F is a formation containing U, then it is not necessarily true that G is in F if

and only if A and B are in F. However even though the class of SC-groups is not a formation

of soluble groups or a saturated formation, this class behaves nicely with respect to totally

permutable products as the following result shows.

Theorem 2.5.4. [7, Theorem 4.5.12] Let the group G = G1G2...Gn be the pairwise totally

permutable product of subgroups G1, G2, ..., Gn. Then G is an SC-group if and only if Gi is an

SC-group for all i ∈ {1, 2, ..., n}.

Proof. By Theorem 2.2.4 it is sufficient to show that ifG is an SC-group, thenGi is an SC-group

for all i ∈ {1, 2, ..., n}. Suppose the result is not true and let G be a minimal counterexample.

Then all factor groups of G satisfy the hypothesis. Since the class of SC-groups is a formation it

follows that G has a unique minimal normal subgroup N and N is simple. If Gi is supersoluble

for all i ∈ {1, 2, ..., n}, then G is supersoluble by Theorem 2.2.4, a contradiction. So there is

i ∈ {1, 2, ..., n} such that GU
i 6= 1. Assume that GU

1 6= 1. So N ≤ GU
1 . Hence N centralises

K = G2G3...Gn. This means N is a minimal normal subgroup of G1. Since G1/N is an SC-

group and N is simple, G1 is an SC-group.

If there exists Gi, i ∈ {2, ..., n} such that Gi is not supersoluble then N ≤ GU
i and arguing

as above, Gi is an SC-group. Hence for all i ∈ {1, 2, ..., n} either Gi is an SC-group or Gi is

supersoluble and the result follows.

Since the normal product of two supersoluble groups is not supersoluble Theorem 2.5.4 does

not hold for mutually permutable products in general. However the following result holds:

Theorem 2.5.5. [6, Theorem 5] Let the group G = G1G2...Gn be the pairwise mutually per-

mutable product of subgroups G1, G2, ..., Gn. If G is an SC-group, then Gi is an SC-group for

all i ∈ {1, 2, ..., n}.

The converse of Theorem 2.5.5 needs a restriction on the intersection to hold for mutually

permutable products when n = 2.
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Theorem 2.5.6. [9, Theorem 2] Let the group G = AB be a mutually permutable product of

subgroups A and B. Suppose CoreG(A ∩ B) = 1. If A and B are SC-groups, then G is an

SC-group.

Theorem 2.5.6 was proved by Ballester-Bolinches, Cossey and Pedraza-Aguilera in [9] and also

by Beidlemen and Heineken in [18] using a different approach.

In this chapter the relationship totally (and respectively mutually) permutable products and

their factors in the framework of formation theory was shown. The key difference between

totally and mutually permutable products is that totally permutable products behave nicely

with respect to forming products in formations containing U, whereas for mutually permutable

products it is not true in general. In the next chapter, since weakly totally permutable products

are between totally and mutually permutable products, the question that Peter Hauck asked:

Which of the results on totally permutable products can be extended to weakly totally permutable

products?

is partially answered.
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Chapter 3

Weakly Totally Permutable Products

and Formations

This chapter is the author’s original work. In this chapter results on weakly totally permutable

products are presented. In particular, Theorems 2.2.4, 2.3.2, 2.3.1 (respectively in the case when

F is a saturated formation containing U) and 2.5.4 are extended to weakly totally permutable

products for n = 2. The results on weakly totally permutable products are proved using results

on totally (and respectively mutually) permutable products that were presented in Chapter 2.

Most of the work in this chapter was published in the Journal of Algebra [28].

3.1 Results on Structure

In this section some structural results that extend results on totally permutable products to

weakly totally permutable products are presented.

Lemma 3.1.1. Let a group G = AB be the weakly totally permutable product of subgroups A

and B.

(i) If H and K are subgroups of G such that A ∩B ≤ H ≤ A and

A ∩B ≤ K ≤ B, then the subgroup HK is a weakly totally permutable product of subgroups H

and K.
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(ii) A ∩B is a nilpotent subnormal subgroup of G.

(iii) If N is a minimal normal subgroup of G such that N ≤ A ∩ B, then N is a cyclic group

of order p for some prime p.

(iv) If A is a minimal normal subgroup of G, then G = AB is the totally permutable product

of subgroups A and B.

Proof. (i) By hypothesis A∩B ≤ H and A∩B ≤ K so A∩B ≤ H ∩K. Also H ∩K ≤ A and

H ∩K ≤ B which implies that H ∩K ≤ A ∩B. Therefore H ∩K = A ∩B.

Let U be a subgroup of H such that U ≤ H ∩ K = A ∩ B. Then U permutes with every

subgroup of B and hence every subgroup of K.

Let V be a subgroup of H such that H ∩ K ≤ V . Note that V is a subgroup of A and

A ∩ B = H ∩K ≤ V . It follows that V permutes with every subgroup of B and hence every

subgroup of K. The same is true if K and H are interchanged. Hence the result follows.

(ii) Let H be a subgroup of A ∩ B. By definition H is a permutable subgroup and hence

a subnormal subgroup of both A and B.

By Theorem 2.0.4, H is a subnormal subgroup of AB = G. So H is a subnormal subgroup of

A ∩B. It follows that A ∩B is a nilpotent subnormal group by Theorem 1.2.7.

(iii) SinceN ≤ A∩B, a nilpotent group it follows thatN is an abelian p-subgroup for some prime

p. Let P be a Sylow p-subgroup of G. Then N ∩Z(P ) 6= 1. Let g ∈ N ∩Z(P ) be an element of

order p. So the subgroup 〈g〉 is permutable in A and in B. Hence 〈g〉 is normalised by all Sylow

q-subgroups of both A and B, that is, 〈g〉 is normal in A and B. Therefore N = 〈g〉 as required.

(iv) By Lemma 2.4.3(iii) either A ∩ B = 1 or A ∩ B = A. If A ∩ B = 1, then the result

follows. If A ∩ B = A, then G = (A ∩ B)B is the totally permutable product of subgroups

A ∩B and B.

Lemma 3.1.1(ii) generalises Lemma 2.1.3. Totally and mutually permutable products behave

nicely with respect to factor groups. However weakly totally permutable products do not have

this property as the following example shows:
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Example 3.1.2. Let G be the direct product of C3(cyclic group of order 3) with B, where B is

an extraspecial group of order 27 and exponent 3 whose presentation is

B = 〈x, y|x3 = y3 = 1, [x, y] = z, zx = xz, yz = zy〉.

Suppose C3 = 〈c〉. Let A = 〈z, cx〉. Then A and B are weakly totally permutable. But if

N = 〈c〉, AN/N and BN/N are not weakly totally permutable since 〈y〉N ≤ AN/N ∩ BN/N

does not permute with 〈x〉N = 〈cx〉N ≤ AN/N ∩BN/N .

The author [28] showed that if the normal subgroup is a product of normal subgroups of G

contained in the factors, then weakly totally permutable products behave nicely with respect

to factor groups, as the following result shows.

Lemma 3.1.3. Let a group G = AB be the weakly totally permutable product of subgroups A

and B.

(i) If M and N are normal subgroups of G such that M ≤ A and N ≤ B, then G/MN =

(AN/MN)(BM/MN) is the weakly totally permutable product of subgroups AN/MN and

BM/MN .

(ii) Let N be a normal subgroup of G. Set X = N ∩ A and Y = N ∩ B. Then G/XY =

(AY/XY )(BX/XY ) is the weakly totally permutable product of subgroups AY/XY and BX/XY .

Proof. (i) Observe that AN/MN ∩BM/MN = (AN ∩BM)/MN . Since M ≤ A and N ≤ B it

follows that (AN ∩BM)/MN = (AN ∩B)M/MN = (A∩B)MN/MN by Dedekind’s Identity.

Let HMN/MN be a subgroup of AN/MN and let KMN/MN be a subgroup of BM/MN .

Then there is a subgroup W of B such that WMN/MN = KMN/MN .

If HMN/MN is a subgroup of (A ∩ B)MN/MN , then there is a subgroup V of A ∩ B such

that VMN/MN = HMN/MN . Since V permutes with W it follows that HMN/MN per-

mutes with KMN/MN . Suppose HMN/MN contains (A ∩ B)MN/MN . Then there is a

subgroup U of A such that UMN/MN = HMN/MN . Consider Y = U(A ∩ B). Then

YMN/MN = U(A ∩ B)MN/MN = HMN/MN . Since Y permutes with W it also follows

that HMN/MN permutes with KMN/MN .

The same is true if A and B are interchanged. Hence the result follows.
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(ii) XY is a normal subgroup of G by Lemma 2.4.3(i). Then

AY/XY ∩BX/XY = (AY ∩BX)/XY = (A∩B)XY/XY . The result now follows arguing as

in the proof of (i).

Using Lemma 2.4.3(ii) and Lemma 3.1.3(ii) it follows that if a group G = AB is a weakly totally

permutable product of subgroups A and B, and has a non-abelian minimal normal subgroup

N , then G/N is a weakly totally permutable product of subgroups AN/N and BN/N .

Lemma 3.1.4. Let F be a saturated formation containing U. Let N be a minimal normal

subgroup of G of order p for some prime p. Then G belongs to F if and only if G/N belongs to

F.

Proof. If G belongs to F, then G/N also belongs to F by the definition of a formation. Suppose

G/N ∈ F. Since N is a cyclic group of order p, G/CG(N) is abelian of exponent p − 1.

Hence G/CG(N) ∈ U(p) ⊆ F (p), where U and F are canonical local definitions of U and F,

respectively. Let H/K be a chief factor of G such that N ≤ K < H. Then since G/N belongs

to F it follows that G/CG(H/K) ∈ F (q) for all primes q dividing |H/K|. Hence G belongs to

F.

Lemma 3.1.5. Let F be a saturated formation containing U. Let a group G = AB be the weakly

totally permutable product of subgroups A and B. Then G belongs to F if and only if A and B

belong to F.

Proof. By Theorem 2.4.13 if CoreG(A ∩ B) = 1, then G belongs to F if and only if A and B

belong to F. So assume that there is a minimal normal subgroup N of G such that

N ≤ Core G(A ∩B). By Lemma 3.1.1(iii) N is cyclic of order p for some prime p. Arguing by

induction on |G| and by Lemma 3.1.3(i) it follows that G/N belongs to F if and only if A/N and

B/N belong to F. Since N is a minimal normal subgroup of both subgroups A and B it follows

from Lemma 3.1.4 that G belongs to F if and only if A and B belong to F as required.

Lemma 3.1.5 generalises Theorems 2.2.4 and 2.2.6 to weakly totally permutable products when

n = 2.
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Lemma 3.1.6. Let F be a saturated formation containing U. Let a group

G = AB be the weakly totally permutable product of subgroups A and B. If E and F are

F-projectors of A and B respectively, then A ∩B is a subgroup of both E and F .

Proof. Let E be an F-projector of A. Then H = E(A∩B) is the totally permutable product of

subgroups E and A ∩B. Since A ∩B is nilpotent (see Lemma 3.1.1), H ∈ F by Lemma 3.1.5.

Since E is F-maximal in A it follows that H = E and hence A ∩B is a subgroup of E.

Analogously F contains A ∩B.

Lemma 3.1.7. Let F be a saturated formation containing U. Let a group G = AB be the weakly

totally permutable product of subgroups A and B. Then AF, BF ≤ GF.

Proof. Suppose the lemma is not true and let G be a minimal counterexample. Let M =

(GF ∩ A)(GF ∩ B) 6= 1. By Lemma 3.1.3(ii) and Lemma 2.4.3(ii), G/M is the weakly totally

permutable product of subgroups AM/M and BM/M . By the choice of G it follows that

AFM ≤ GFM = GF, a contradiction.

Suppose M = 1. Let H/K be a chief factor of G such that 1 ≤ K < H ≤ GF. Since G/K is

the weakly totally permutable product of subgroups AK/K and BK/K and H/K ∩AK/K =

H/K ∩ BK/K = 1 it follows that |H/K| = p for some prime p by Lemma 2.4.7. Hence

G/CG(H/K) ∈ U(p) ⊆ F (p), where U and F are canonical local definitions of U and F,

respectively. Let H/K be a chief factor of G such that GF ≤ K < H. Then since G/GF belongs

to F it follows that G/CG(H/K) ∈ F (q) for all primes q dividing |H/K|. Hence G belongs to

F and by Lemma 3.1.5 both A and B belong to F our final contradiction.

The same is true if A and B are interchanged.

Lemma 3.1.8. Let a group G = AB be the weakly totally permutable product of subgroups A

and B. If B is supersoluble, then GU = AU.

Proof. Suppose the lemma is not true and let G be a minimal counterexample. So assume that

GUN = AUN for any minimal normal subgroup N of G such that N ≤ A or N ≤ B. By

Theorem 2.4.13 if CoreG(A ∩ B) = 1, then GU = AU. Assume that there is a minimal normal

subgroup N of G contained in CoreG(A∩B). By Lemma 3.1.3(i) and the choice of G it follows

that GUN = AUN . It also follows that GU ≤ A and hence AU is a normal subgroup of GU by
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Lemma 3.1.7 since AU is a normal subgroup of A. Let M be a minimal normal subgroup of G

contained in GU. By Lemma 3.1.3(i) GUM = GU = AUM .

Let AS 6= 1 be the soluble residual of A. By Theorem 2.4.6 AS is a normal subgroup of G. Since

A/AU ∈ U ⊆ S it follows that AS ≤ AU. Hence GU = ASAU = AU which is a contradiction.

So A is soluble. Since B is supersoluble it follows that G is soluble by Theorem 2.4.6. Hence

M is abelian. Now GU/AU = MAU/AU ∼= M/(M ∩ AU) is abelian. It follows that (GU)′ ≤ AU.

If (GU)′ 6= 1, then GU = AU(GU)′ = AU because (GU)′ is a normal subgroup of G. So GU must

be abelian.

Let A1 be an U-projector of A by Theorem 1.8.5. Then A ∩ B ≤ A1 by Lemma 3.1.6 and

G = AUA1B = GU(A1B). Since A1B is the weakly totally permutable product of subgroups A1

and B it follows that A1B is supersoluble by Lemma 3.1.5. Let F be an U-maximal subgroup of

G such that A1B ≤ F . Since G = GUF , F is an U-projector of G by Lemma 1.8.7. By Theorem

1.8.9, GU ∩ F = 1. Hence GU = AU(A1B ∩GU) = AU which is our final contradiction.

Lemma 3.1.9. Let a group G = AB be the weakly totally permutable product of subgroups A

and B. Then [A,BU] = [AU, B] = 1.

Proof. Suppose the lemma is not true and let (G,B) be a counterexample with |G| + |B|

minimal.

Firstly it is argued that B is supersoluble. Let D = A ∩ B. If for all x ∈ B, it implies that

D〈x〉 is a proper subgroup of G, then by the choice of G, B = 〈D〈x〉 | x ∈ B〉 centralises AU, a

contradiction. So assume that B = D〈x〉, which is a totally permutable product of subgroups

D and 〈x〉. Since D is nilpotent and 〈x〉 is cyclic, B is supersoluble by Lemma 3.1.5.

By Lemma 3.1.8, GU = AU. Let N be a minimal normal subgroup of G contained in AU. Then

G/N = (A/N)(BN/N) is the weakly totally permutable product of subgroups A/N and BN/N

by Lemma 3.1.3(i). Since BN/N is supersoluble, it follows that BN/N ≤ CG/N(GUN/N) by

the choice of G and [B,AU] ≤ N .

If A ∩ B = B, then A = G and B are totally permutable and a contradiction follows from

Lemma 2.3.3. Let M be a maximal subgroup of B such that A ∩ B ≤ M . Then AM is the

weakly totally permutable product of subgroups A and M . So (AM)U = AU. Also M ≤ CG(AU)

by the choice of (G,B). If M1 and M2 are maximal subgroups of B such that A ∩ B ≤ M1

and A ∩ B ≤ M2, then B = 〈M1,M2〉 ≤ CG(AU) which is a contradiction. So B has a unique
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maximal subgroup M such that A ∩B ≤M and M ≤ CG(AU).

Let A1 be a U-projector of A by Theorem 1.8.5. Then A ∩ B ≤ A1. By Lemma 3.1.5, A1B is

supersoluble and G = (A1B)AU. Let U be a U-maximal subgroup of G containing A1B. Then

G = UAU. So ZU(G) = CU(AU) by Theorem 1.8.10, where ZU(G) is the U-hypercentre of G.

This implies M ≤ ZU(G). It is now to be shown that N ≤ ZU(G).

By Theorem 2.4.9 B is a normal subgroup of BAU and so [B,AU] ≤ B. Suppose N ∩ B = 1.

Then [B,AU] ≤ B ∩N = 1, a contradiction. Hence N ≤ A∩B ≤M ≤ ZU(G) and ZU(G/N) =

ZU(G)/N .

But G/N = (UN/N)(AU/N) and (G/N)U = AU/N . Let U1/N be a U-maximal subgroup of

G/N containing UN/N . It follows that ZU(G)/N = ZU(G/N) = CU1/N(AU/N) by Theorem

1.8.10. By the choice of G it also follows that B/N ≤ ZU(G)/N and so B ≤ ZU(G) which is

our final contradiction.

The same is true if A and B are interchanged.

Lemma 3.1.9 generalises Corollary 2.1.12.

Lemma 3.1.10. Let F be a formation containing U. Let a group G = AB be the weakly totally

permutable product of subgroups A and B. Then AF and BF are normal subgroups of G.

Proof. Since A/AU ∈ U ⊆ F, AF ≤ AU. By Lemma 3.1.9, B centralises AU and hence B ≤

CG(AF). Since AF is normal in A it means that AF is a normal subgroup of G.

Analogously BF is normal in G.

Open Question 3.1.11. Can Theorem 2.3.3 be extended to weakly totally permutable products?

3.2 Weakly Totally Permutable Products and Formation

Subgroups

In this section Theorems 2.2.4, 2.3.2 and 2.3.1 (respectively in the case when F is a saturated

formation containing U) are extended to weakly totally permutable products. These results
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are relationships between F-residuals (respectively F-projectors) of subgroups and that of the

product, where F is a saturated formation.

Theorem 3.2.1. [28, Theorem 1] Let F be a saturated formation containing U. Let a group

G = AB be the weakly totally permutable product of subgroups A and B. Then GF = AFBF.

Proof. The proof of the theorem is by induction on |G|. Using Lemma 3.1.5 assume that GF 6= 1

and AFBF 6= 1. Let N be a minimal normal subgroup of G contained in AF using Lemma 3.1.10.

Then G/N = (A/N)(BN/N) is the weakly totally permutable product of subgroups A/N and

BN/N and so GFN = AFBFN = AFBF. Hence GF ≤ AFBF. By Lemma 3.1.7 AFBF ≤ GF.

Hence the result now follows.

Theorem 3.2.1 extends part of Theorem 2.3.1 (when F is a saturated formation) to weakly

totally permutable products when n = 2.

Theorem 3.2.2. [28, Theorem 2] Let F be a saturated formation containing U. Let a group

G = AB be the weakly totally permutable product of subgroups A and B. If A1 and B1 are

F-projectors of A and B respectively, then A1B1 is an F-projector of G.

Proof. Suppose the theorem is not true and let G = AB be a minimal counterexample. So

A 6= 1 and B 6= 1. By Lemmas 3.1.5 and 3.1.10 it can be assumed that there exists a minimal

normal subgroup N of G such that N ≤ A. Then G/N = (A/N)(BN/N) is the weakly totally

permutable product of subgroups A/N and BN/N . This means that (A1N/N)(B1N/N) =

(A1B1)N/N is an F-projector of G/N by the choice of G. Consider C = (A1B1)N . Suppose C

is a proper subgroup of G. Since A∩B is contained in both A1 and B1, the subgroup (A1N)B1

is the weakly totally permutable product of subgroups A1N and B1. Also A1 is an F-projector

of A1N by Lemma 1.8.7. This implies that A1B1 is an F-projector of C by the minimality of

G. Therefore A1B1 is an F-projector of G using Theorem 1.8.6 which is a contradiction.

Hence G = (A1B1)N . By Theorem 3.2.1 A1B1 ∈ F. Since G/N ∈ F, GF ≤ N . Also GF is a

normal subgroup of G so GF = 1 or GF = N . If GF = 1, then A1 = A and B1 = B by Theorem

3.2.1, a contradiction. Hence GF = N . Let F be an F-maximal subgroup of G containing A1B1.

It follows that F is an F-projector of G by Lemma 1.8.7. Also F = F∩A1B1N = (A1(F∩N))B1

which is the weakly totally permutable product of subgroups A1(F ∩N) and B1. Since F ∈ F
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it follows that A1(F ∩N) ∈ F by Theorem 3.2.1. But A1 is F-maximal in A, so A1 = A1(F ∩N)

and F = (A1(F ∩N))B1 = A1B1 is an F-projector of G, our final contradiction.

Theorem 3.2.2 generalises Theorem 2.3.2 for n = 2.

Theorem 3.2.3. [28, Theorem 3] Let F be a formation containing U. Let a group G = AB be

the weakly totally permutable product of subgroups A and B. If A and B belong to F, then G

also belongs to F.

Proof. Suppose the theorem is not true and let G be a counterexample with |G| + |A| + |B|

minimal. So A,B ∈ F but G /∈ F. By Theorem 3.2.1 either A or B is not supersoluble. Assume

AU 6= 1. By Lemma 3.1.9, B centralises AU. It follows that AU centralises 〈BG〉 since AU is

normal in G. Let A1 be a U-projector of A by Theorem 1.8.5. Then A ∩ B ≤ A1 by Lemma

3.1.6 and A = A1A
U. Consider A1B, the weakly totally permutable product of subgroups A1

and B. It means that A1 ∈ U ⊆ F and B ∈ F and A1B ∈ F since

|A1B|+ |A1|+ |B| < |G|+ |A|+ |B| . Since 〈BG〉 is a normal subgroup of G, A acts on 〈BG〉

by conjugation. Let Z = [〈BG〉]A be the semidirect product of 〈BG〉 and A with respect to this

action. So G is a quotient group of Z by Lemma 2.0.6. It is sufficient to show that Z belongs

to F.

Since AU centralise 〈BG〉, AU is normal in Z. So Z/AU = [〈BG〉]A1A
U/AU is isomorphic to

[〈BG〉](A1/(A1 ∩ AU)), a quotient group of [〈BG〉]A1.

Since AU ≤ CG(B) it follows that 〈BG〉 = 〈BA〉 = 〈BA1〉. There exists an epimorphism

ϕ : [〈BG〉]A1 → BA1 by Lemma 2.0.6. So [〈BG〉]A1/〈BA1〉 which is isomorphic to A1 ∈ U ⊆ F

and [〈BG〉]A1/ Ker ϕ ∼= BA1 ∈ F. Hence [〈BG〉]A1/( Ker ϕ ∩ 〈BA1)〉 = [〈BG〉]A1 ∈ F.

Therefore Z/AU ∈ F and so Z/〈BG〉 ∼= A ∈ F. By Lemma 2.0.6, 〈BG〉 ∩ AU = 1 which implies

Z/(〈BG〉 ∩ AU) = Z ∈ F. The result follows since G is a quotient group of Z.

Open Question 3.2.4. Do Theorems 3.2.1, 3.2.2 and 3.2.3 hold for pairwise weakly totally

permutable products?
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3.3 Weakly Totally Permutable Products and SC-groups

In this section Theorem 2.5.4 is extended to weakly totally permutable products for n = 2.

Theorem 3.3.1. Let the group G = AB be the weakly totally permutable product of subgroups

A and B. Then G is an SC-group if and only if A and B are SC-groups.

Proof. The argument is by induction on |G|. By Theorem 2.5.5 it is sufficient to prove that if

A and B are SC-groups, then G is an SC-group. By Theorem 2.5.6 it can be assumed that

there exists a minimal normal subgroup N such that N ≤ CoreG(A ∩ B). Since G/N satisfies

the hypothesis, it follows that G/N is an SC-group by induction. By Lemma 3.1.1(iii) N is a

cyclic group of order p for some prime p. Hence G is an SC-group as required.

Open Question 3.3.2. Does Thereom 3.3.1 hold for pairwise weakly totally permutable prod-

ucts?

It has been shown that some results on totally permutable products also hold for weakly totally

permutable products in the framework of formations when the number of factors is two. Dual

to the concept of formations is that of Fitting classes. In Chapter 4 products of finite groups

are studied in the framework of Fitting classes.

The question by Peter Hauck:

Which of the results on totally permutable products can be extended to weakly totally permutable

products?

is also partially answered.
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Chapter 4

Products of Finite Groups and Fitting

Classes

In this chapter results on Fitting classes and how they relate to products of finite groups are

presented. In Chapter 3 it was shown that saturated formations behave nicely with respect to

weakly totally permutable products. An attempt is made to extend results that hold for totally

permutable products to weakly totally permutable products. Fischer classes containing U were

proved to behave nicely with respect to forming products in totally permutable products. It

is shown that a particular Fischer class, F �N, where F is a Fitting class containing U and N

is the class of all nilpotent groups, also behave nicely with respect forming products in weakly

totally permutable products.

4.1 Fitting Classes

In this section results on the structure of Fitting classes are presented.

Definition 4.1.1. A non-empty class F is a Fitting class if and only if the following two

conditions are satisfied:

(i) If G ∈ F and N / G, then N ∈ F;

(ii) If M,N / G = MN with M and N in F, then G ∈ F.
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A result which defines an F-radical is presented below.

Lemma 4.1.2. [23, II, Lemma 2.9] Let X be an n0-closed class and G be a finite group. Then

the set S = {N sn G : N ∈ X}, partially ordered by inclusion, has a unique maximal element,

denoted by GX and called the X-radical of G. It is a characteristic subgroup of G and if X is a

Fitting class and K sn G, then KX = K ∩GX.

So the F-radical, GF of G is the unique maximal normal F-subgroup of G and this is the join

of all subnormal F-subgroups of G . Hence GN = F (G).

Definition 4.1.3. Let F be a Fitting class and C a class of finite groups. Define

F � C = (G : G/GF ∈ C)

and call F � C the Fitting product of F with C.

The following result shows that the Fitting product defined above is in fact a Fitting class when

C is a Fitting class.

Theorem 4.1.4. [23, IX, Theorem 1.12(a)] Let F and C be a Fitting classes. Then F � C is a

Fitting class.

There exists a special type of Fitting products which is defined in the next line. A group

G ∈ X � X = XX = X2 where X is a Fitting class of groups, is called a meta-X group. An

example of this type of group which forms a Fitting class is a metanilpotent group. This is a

group G such that G/F (G) is nilpotent and denoted by N �N = N2. Since the derived group

of a supersoluble group is nilpotent, it follows that U ⊆ N2.

In general Fitting classes are not r0-closed. The following result can be substituted for r0-

closure. Its known as the quasi-r0 Lemma.

Theorem 4.1.5. (The quasi-r0 Lemma)[23, IX, Lemma 1.13]

Let N1 and N2 be normal subgroups of a group G such that N1 ∩ N2 = 1 and G/N1N2 is

nilpotent, and let F be a Fitting class containing G/N1. Then G ∈ F if and only if G/N2 ∈ F.

A special type of a Fitting class is defined below.
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Definition 4.1.6. A Fischer class is a Fitting class such that if K/G ∈ F and H/K is nilpotent

subgroup of G/K, then H ∈ F.

An example of a Fischer class is given in [23, IX, Examples (3.7)(c)(2)](pg. 604) which is the

Fitting product F �N, where F is a Fitting class. From this it follows that N2 is a Fischer class

containing U.

4.2 Totally Permutable Products and Fitting Classes

It is not known if, in general, Fitting classes containing the class of all supersoluble groups

are closed under the formation of totally permutable products. In this section some results

on totally permutable products and Fitting classes are presented. This is mainly the work of

Hauck, Mart́ınez-Pastor and Pérez-Ramos [24]. They proved that Fischer classes behave nicely

with respect to forming totally permutable products. The arguments presented are based on

their original proofs in [24] and [25]. In the following result Propositions 1 and 2 of [24] are

combined.

Lemma 4.2.1. [24, Propositions 1 and 2] Let h be a subgroup-closed saturated formation and

let

Th = (G = AB;A and B are totally permutable, A ∩B ≤ Zh(G)).

Let F be a Fitting class containing U. Suppose that the following cases hold:

Case 1 : there exists G = AB ∈ Th with A,B ∈ F but G /∈ F, and that among all these

groups in Th, let (G,A,B) be a group with least |G|+ |A||B|, or

Case 2 : there exists G = AB ∈ Th with G ∈ F, but not both of A and B in F, and

among all these groups in Th, let (G,A,B) a group with least |G|+ |A||B|.

Then, after interchanging the roles of A and B if neccessary, the following holds:
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1. A/AN is a cyclic p-group for a prime p and AN is a non-trivial normal subgroup of G.

2. B is a normal abelian p′-subgroup and p divides q − 1 for all prime divisors q of |B|.

3. B = [A,B].

4. A ∩B = AN ∩B ≤ ZU(G) but A ∩B � Z∞(G).

5. A acts as a group of power automorphisms on B.

If U ⊆ h, then condition 2 can be replaced by

2 ′. B is a normal cyclic q-subgroup, where q is a prime such that p divides q − 1.

Proof. Since h is subgroup closed, it follows that Zh(G) ∩M ≤ Zh(M) for every subgroup M

of G. So if A1 ≤ A and B1 ≤ B, then A1B1 ∈ Th.

The proof is split into the following steps.

(1) Without loss of generality it may be assumed that B is a nilpotent group and that A is

not nilpotent. Moreover, [B,AN] = 1.

By Theorem 2.3.3, [B,AN] = [A,BN] = 1. Suppose that A and B are both nilpotent.

If Case 1 holds, then G would be supersoluble by Theorem 3.2.3 which contradicts the choice

of (G,A,B).

By the choice of A and B Case 2 does not hold.

Hence A and B cannot both be nilpotent.

Suppose that AN 6= 1 and BN 6= 1. Note that AN cannot be central in A and BN cannot be

central in B otherwise A and B will be nilpotent. Then since [AN, B] = [A,BN] = 1, it follows

that B ≤ CG(AN) < G and A ≤ CG(BN) < G. Hence CG(AN) = B(A ∩ CG(AN)) is a totally

permutable product of the subgroups B and A ∩ CG(AN).
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Assume that Case 1 holds. Then since A ∩CG(AN) is a normal subgroup of A ∈ F and B ∈ F,

it follows that A ∩ CG(AN) ∈ F. So CG(AN) ∈ F since

|G|+ |A|+ |B| < |CG(AN)|+ |A ∩ CG(AN)|+ |B|. Analogously CG(BN) ∈ F and so

G = CG(AN)CG(BN) ∈ n0F = F because it is a product of two normal F-subgroups.

Assume now that Case 2 holds. Then CG(AN) is an F-subgroup because it is a normal sub-

group of G. By the choice of (G,A,B), B ∈ F. Analogously A ∈ F, contradicting the choice of

(G,A,B).

Therefore A and B cannot be both non-nilpotent. Hence (1) follows.

(2) G = 〈AG〉 = A[A,B], 〈BG〉 ∩ A is nilpotent and 〈BG〉 ∈ U ⊆ F.

Note first that [B,AN] = 1 implies that [〈BG〉, AN] = 1 since AN is a normal subgroup of

G. Now

(〈BG〉 ∩ A)/(〈BG〉 ∩ AN) ∼= (〈BG〉 ∩ A)AN/AN ∈ N

and

〈BG〉 ∩ AN ≤ Z(〈BG〉 ∩ A),

so 〈BG〉 ∩ A is nilpotent. Consequently 〈BG〉 = B(〈BG〉 ∩ A) is a totally permutable product

of two nilpotent groups 〈BG〉 ∩ A and B. Then 〈BG〉 ∈ U ⊆ F by Theorem 3.2.3.

Assume now that 〈AG〉 is a proper subgroup of G. Then 〈AG〉 = A(〈AG〉 ∩ B) is a totally

permutable product of subgroups A and 〈AG〉 ∩B.

Assume Case 1 holds. Then 〈AG〉 ∩B is a normal subgroup of B and so 〈AG〉 ∩B ∈ F. By the

choice of (G,A,B) it follows that 〈AG〉 ∈ F. Since 〈BG〉 ∈ U, it follows that G = 〈AG〉〈BG〉 ∈

n0F = F, a contradiction.

Assume Case 2 holds. Then 〈AG〉 ∈ F because 〈AG〉 is a normal subgroup of G and by the

choice of (G,A,B), A ∈ F, a contradiction. Hence G = 〈AG〉.

(3) There exists a prime number p such that G = ANAp〈BG〉, where Ap is a Sylow p-subgroup

of A.
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Assume that ANAq〈BG〉 is a proper subgroup of G for all primes q, where Aq denotes a Sylow

q-subgroup of A. Then

ANAq〈BG〉 = ANAq〈BG〉 ∩ AB = ANAq(〈BG〉 ∩ A)B.

Now [ANAq, B] ≤ [A,B] ≤ 〈BG〉 so ANAq〈BG〉 is normalised by B and ANAq〈BG〉 is nor-

malised by A since A/AN is nilpotent and ANAq/A
N is the normal Sylow q-subgroup of A/AN

and so ANAq is a normal in A. Hence ANAq〈BG〉 is a normal subgroup of G. The subgroups

Xq = ANAq(〈BG〉∩A) and B are totally permutable. Assume that Case 1 holds. Then Xq ∈ F

because Xq is a normal subgroup of A and, by the choice of (G,A,B), it follows that XqB ∈ F.

Hence G =
∏

q∈PXqB ∈ n0F = F, a contradiction of the assumption. Assume now that Case 2

holds. Then XqB is a normal subgroup of G and so XqB ∈ F. By the minimality of (G,A,B),

Xq ∈ F for all primes q. It follows that A =
∏

q∈PXq ∈ n0F = F, a contradiction of the

assumption.

(4) Assume that Case 1 holds. Then for all primes q 6= p, ANAq[A,B] is a normal F-subgroup

of G, where Aq is a Sylow q-subgroup of A, but ANAp[Ap, B] /∈ F.

By (3) G = 〈AG〉 = 〈AB〉 = A[A,B]. Since [A,B] is a normal subgroup of G, and ANAq is a

normal subgroup of A, it follows that ANAq[A,B] is a normal subgroup of G. Now AN, 〈BG〉 ∈ F

by (2) and so AN〈BG〉 ∈ n0F = F. Since G/AN〈BG〉 is a p-group, it follows that ANAq[A,B] is

contained in AN〈BG〉. Hence ANAq[A,B] is an F-group.

Consider the normal subgroup C = 〈(ANAp)
G〉 of G. Since [B,AN] = 1, it follows that

C = 〈(ANAp)
B〉 = ANAp[A

NAp, B] = ANAp[Ap, B]. Suppose that C ∈ F. Then by (2), it

follows that

G = 〈AG〉 = A[A,B] = C(
∏

q 6=pA
NAq[A,B]) ∈ n0F = F,

contradicting the choice of (G,A,B).
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(5) Assume that Case 2 holds. Then for all primes q 6= p, ANAq ∈ F, where Aq is a Sy-

low q-subgroup of A. Moreover, ANAp /∈ F.

By (3) Xq = ANAq ≤ AN〈BG〉 = Xq〈BG〉. It follows that AN〈BG〉 ∈ n0F = F because

AN ∈ F and 〈BG〉 is supersoluble by (2). Since Xq〈BG〉 is a proper subgroup of G, which is a

totally permutable product of subgroups A∩Xq〈BG〉 and B, it follows that A∩Xq〈BG〉 ∈ F by

the choice of (G,A,B). Then Xq ∈ F because Xq is normal in A ∩Xq〈BG〉. Finally, if Xp ∈ F,

then A =
∏

q∈PXq ∈ n0F = F, contradicting the assumption.

(6) G = ANAp[Ap, B] = ANApB.

Let C = ANAp[Ap, B] = 〈(ANAp)
G〉. Assume that C is a proper subgroup of G. Then

C = C ∩ (ANApB) = ANAp(C ∩ B) which is a totally permutable product of subgroups ANAp

and C ∩B.

Assume Case 1 holds. Then by the choice of (G,A,B), C ∈ F which contradicts (4).

Assume now that Case 2 holds. Then C ∈ F since C is a normal subgroup of G. By the

choice of (G,A,B) it follows that ANAp ∈ F which contradicts (5). Hence C = G. Since

C = ANAp[Ap, B] ≤ ANApB, it also follows that G = ANApB.

(7) A/AN is a p-group. In particular, A = ANAp.

By (6), G = ANApB. If ANAp < A, then by the choice of (G,A,B) it follows that G =

ANApB ∈ F if Case 1 holds, this is a contradiction and ANAp ∈ F which contradicts (5) if Case

2 holds. So ANAp = A. Hence A/AN is a p-group.

(8) p divides q−1 for all prime divisors q of |B| different from p. Moreover, G = ANApOp(B)Op′(B)

and Op′(B) is a normal subgroup of G.

Firstly it is shown that there exists a prime q dividing |B| with p < q. Suppose the con-

trary, that is, p ≥ q for all primes q dividing |B|. By Theorem 2.2.4 ApB is supersoluble. It

follows that ApOp(B) is a normal subgroup of ApB by Theorem 1.2.5 which implies that Ap is
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a subnormal subgroup of ApB. Since AN is normal subgroup of G, it follows that ANAp = A is

a subnormal subgroup of ANApB = G.

Assume Case 1 holds. Then since B is subnormal in G by (2), it follows that G = AB ∈ n0F =

F, against the choice of (G,A,B).

If Case 2 holds, then A ∈ F since it is a subnormal subgroup of G ∈ F which again contradicts

the choice of (G,A,B).

Let π(B) be the set of all primes dividing |B| and consider π(B) ∪ {p} = {p1, p2, ..., pt =

p, pt+1, ..., pn} with p1 < p2 < ... < pt = p < pt+1 < ... < pn. Denote by π = {p, pt+1, ..., pn}

and π′ = (π(B) ∪ {p})\π. Since ApB is a supersoluble group, ApOπ(B) is normalised by

B by Theorem 1.2.5. Also Ap is normalised by Bπ′ . Then [Ap, B] = [Ap, Bπ′Oπ(B)] =

[Ap, Bπ′ ][Ap, Oπ(B)] ≤ Ap[Ap, Oπ(B)]. By (6) G = ANAp[Ap, B] = ANAp[Ap, Oπ(B)] is con-

tained in ANApOπ(B) and so G = ANApOπ(B). Assume that AOπ(B) < G. By the choice of

(G,A,B) it follows that in Case 1 G ∈ F and in Case 2 A ∈ F which are both contradictions.

Hence B = Oπ(B) and so p ≤ q for all primes q ∈ π(B).

Now since p < q for all primes q ∈ π(B)\{p} and ApB is supersoluble, p divides q−1. It follows

that Op′(B) is centralised by AN and normalised by Ap. Hence Op′(B) is a normal subgroup of

G = ANApOp(B)Op′(B) since Op′(B) is normal in B.

(9) B is a normal p′-subgroup of G. Moreover, B = [A,B].

Suppose that B is not a p′-subgroup. Then it means that Op′(B) < B, that is, AOp′(B) < G.

By (8) ANOp′(B) is a normal subgroup of G and G/ANOp′(B) is a p-group. So AOp′(B) is a

subnormal subgroup of G.

Assume that Case 1 holds. Then by the choice of (G,A,B) it follows that AOp′(B) ∈ F. This

means that

G = (AOp′(B))〈BG〉 ∈ n0F = F,

since AOp′(B) is subnormal and 〈BG〉 is normal in G. This contradicts the choice of (G,A,B).

Assume that Case 2 holds. Then since AOp′(B) is a subnormal subgroup of G ∈ F, it follows

that AOp′(B) ∈ F. By the minimality of (G,A,B) it also follows that A ∈ F, a contradiction.

Therefore G = AOp′(B) and B = Op′(B) is a normal p′-subgroup of G by the minimality of
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(G,A,B).

Hence [A,B] = [Ap, B] ≤ B and [A,B] is a normal subgroup of G and [A,B] ∈ N ⊆ F. By (2)

G = 〈AG〉 = A[A,B]. Suppose that [A,B] is a proper subgroup of B.

Assume that Case 1 holds. Then by the choice of (G,A,B) it follows that G = A[A,B] ∈

n0F = F, a contradiction to the choice of (G,A,B).

Assume that Case 2 holds. Then also by the choice of (G,A,B), A ∈ F, again a contradiction.

Therefore [A,B] = B.

(10) A acts on B by conjugation as a group of power automorphisms and B is an abelian

group.

By (7) ANAp = A. Now AN centralises B by Theorem 2.3.3. Also Ap normalises every subgroup

of B by Theorem 2.4.2 since Ap∩B = 1, ApB is a totally permutable product of Ap and B and

B is normal in ApB. It follows that A normalises every subgroup of B.

Since B = [ANAp, B] = [Ap, B], it follows that Oq(B) cannot be centralised by A for each prime

q dividing |B|. Otherwise [Ap, B] = [Ap, Oq(B)Oq′(B)] = [Ap, Oq′(B)] which does not contain

Oq(B), a contradiction. By Lemma 1.2.9, Oq(B) is abelian for all q. Hence B is a direct product

of abelian subgroups and so is also abelian.

(11) A ∩B = AN ∩B ≤ ZU(G), but A ∩B � Z∞(G).

Since A ∩ B is a p′-group by (9) and A = ApA
N by (7) it follows that A ∩ B = AN ∩ B.

Moreover, A ∩ B ≤ ZU(G) by Lemma 2.3.5. Suppose that A ∩ B ≤ Z∞(G). By (1) and (9),

B = [B,A] = [B,Ap] is an abelian p′-group. It also follows from (10) that A ∩B is normalised

by Ap. Hence by [23, A, Corollary 12.6] A∩B = [A∩B,Ap]. But A∩B ≤ Z∞(G) implies that

A ∩ B normalises Ap since Ap is a Sylow p-subgroup of G. Since (A ∩ B) ∩ Ap = 1 it follows

that A ∩ B = [A ∩ B,Ap] = 1. Consider G/ANB, which is a nilpotent group, and the group

G/AN. Now G/AN is supersoluble since it is isomorphic to a factor group of ApB.

If Case 1 holds, then G/B ∼= A is an F-group. Using the quasi-r0 Lemma 4.1.5, G ∈ F, contra-

dicting the choice of (G,A,B).

Suppose Case 2 holds. Then again by the quasi-r0 Lemma 4.1.5, it follows that A ∼= G/B ∈ F,
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which is a contradiction.

(12) A/AN is a cyclic p-group.

Suppose that the statement is not true. Assume that there exist maximal subgroups, H and

K, of A that contain AN. Then H and K are subnormal subgroups of A and hence BH and

BK are subnormal subgroups of G since B is normal in G.

Assume that Case 1 holds. Then by the minimality of (G,A,B) it follows that BH and BK

belong to F. Therefore G = (BH)(BK) ∈ n0F = F which is a contradiction to the choice of

(G,A,B).

Assume that Case 2 holds. Then sinceG ∈ F, the subnormal subgroups BL and BM also belong

to F. By the minimality of (G,A,B), H and K belong to F. Therefore A = 〈H,M〉 ∈ n0F = F,

which is a contradiction to the choice of (G,A,B).

The previous steps prove statements 1-5 of the lemma. What is left is to show that if U ⊆ h,

then statement 2′ holds. By Lemma 2.3.5, if G = AB is a totally permutable product of sub-

groups A and B, then A ∩B ≤ Zh(G). In this case the following holds:

(13) B is a q-group for a prime q 6= p.

Let q be a prime dividing |B| and assume that the result is not true. Without loss of generality

assume that q is a prime such that A∩Oq′(B) 6= 1 by (11). From (10), G is a totally permutable

product of subgroups AOq′(B) and Oq(B), and |G|+ |AOq(B)||Oq(B)| < |G|+ |A||B|.

Assume that Case 1 holds. Then by the minimality of (G,A,B) it follows that AOq′(B) belong

to F and Oq(B) ∈ F. Since |G| + |AOq′(B)||Oq(B)| < |G| + |A||B|, by our choice of (G,A,B)

it follows that G ∈ F, a contradiction.

Assume that Case 2 holds. By the minimality of (G,A,B), AOq′(B) belongs to F. Again by

the minimality of (G,A,B) it follows that A ∈ F, which is a contradiction.

(14) B is a cyclic q-group.
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Assume that B is not cyclic. Since B is abelian q-group and A∩B 6= 1 by (11), there is a direct

decomposition B = M×N where N is a cyclic group such that A∩N 6= 1. So G = (AN)M is a

totally permutable product of subgroups AN and M by (10) and |G|+ |AN ||M | < |G|+ |A||B|.

Assume that Case 1 holds. Then by the minimality of (G,A,B), it follows that AN ∈ F. Again

by the minimality of (G,A,B) it follows that G ∈ F, which is a contradiction.

Assume that Case 2 holds. Then by the minimality of (G,A,B) it follows that AN ∈ F and

again by the minimality of (G,A,B) it also follows that A ∈ F, which is also a contradiction.

As a direct consequence of Lemma 4.2.1 the following result holds.

Theorem 4.2.2. [24, Theorem 1] Let F be a Fitting class containing U. Let a group G = AB

be a totally permutable product of subgroups A and B. Assume that A ∩ B ≤ Z∞(G). Then G

belongs to F if and only if A and B belong to F.

The next result is presented without a proof.

Theorem 4.2.3. [24, Theorem 2] Let F be a Fischer class containing U. Let a group G = AB

be a totally permutable product of subgroups A and B. Then G belongs to F if and only if A

and B belong to F.

In [24], the authors show that if F is q-closed and A and B are in F, then G is also in F when

G is a totally permutable product of A and B. The result is presented below with its proof.

Theorem 4.2.4. [24, Theorem 3] Let F be a Fitting class containing U. Assume that whenever

G ∈ F and N ≤ ZU(G), then G/N ∈ F(in particular, this holds for a q-closed Fitting class).

Let a group G = AB be a totally permutable product of subgroups A and B. If A and B belong

to F, then G belongs to F.

Proof. Assume that the theorem is not true and let G = AB be a minimal counterexample as

in Lemma 4.2.1 with h = E, the class of all finite groups.

Since B is a normal subgroup of G, A acts on B by conjugation. Let X = [B]A be a semidirect

product of B and A with respect to this action. By Lemma 2.0.6 there is an epimorhism

α : X → G such that Ker α ∩ B = 1 given by (b, a)α = ba for all a ∈ A, b ∈ B. Now if (b, a) ∈
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Ker α, then (b, a)α = ba = 1, which implies that a = b−1 and consequently a, b ∈ A∩B. Hence

Ker α ≤ [A ∩B](A ∩B), which is a direct product since A ∩B is normalised by A by Lemma

4.2.1(5) and B is cyclic by Lemma 4.2.1(2′)(and hence A ∩B is also normal in B).

It follows that X/AN ∼= [B](Ap/(Ap∩AN)) is a totally permutable product of abelian subgroups

by Lemma 4.2.1(1) and (2′). So X/AN ∈ U ⊆ F by Theorem 3.2.3. Moreover, X/B ∼= A ∈ F.

On the hand X/([B]AN) is a p-group. It follows that X ∈ F by the quasi-r0 Lemma 4.1.5.

By Lemma 2.3.5, it follows that A ∩ B ≤ ZU(G). By Lemma 4.2.1(2′) and (5), B is cyclic

and G acts on B as a group automorphisms. Hence [A ∩ B](A ∩ B) ≤ ZU(X). By hypothesis

G ∼= X/Ker α ∈ F, which is a contradiction.

The converse of Theorem 4.2.4 was shown to hold for r0-closed Fitting classes.

Theorem 4.2.5. [24, Theorem 4] Let F be an r0-closed Fitting class containing U. Let a group

G = AB be a totally permutable product of subgroups A and B. If G ∈ F, then A ∈ F and

B ∈ F.

Proof. Assume that the theorem is not true and let G = AB be a minimal counterexample as

in Lemma 4.2.1 with h = E, the class of all finite groups. In particular, B is a nilpotent normal

p′-subgroup of G and A/AN is a p-group for a prime p.

Since AN is a normal subgroup of G, ApB acts on AN by conjugation. Let C = [AN]ApB be

a semidirect product of AN and ApB with respect to this action. By Lemma 2.0.6 there is an

epimorphism α : C → G such that Ker α ∩ AN = 1.

Firstly it is shown that C is an F-group. By hypothesis C/Ker α ∼= G ∈ F. Since ApB is a

totally permutable product of supersoluble subgroups, ApB is supersoluble by Theorem 3.2.3.

So C/AN ∼= ApB ∈ F. Hence C ∼= C/(AN∩ Ker α) ∈ r0F = F.

We argue that A ∈ F. Since AN ∩ B = 1, it follows that C/(AN ∩ B) = C ∈ F. It also follows

that C/[AN]B is a p-group and C/AN ∈ F. Hence by the quasi-r0 Lemma 4.1.5 C/B ∈ F. It

follows that X = [AN]Ap ∼= C/B ∈ F. By Lemma 2.0.6 there is an epimorphism ϕ : X → A

such that Ker ϕ ∩ AN = 1. Now X/AN and X/(AN Ker ϕ) are nilpotent groups. Also X ∈ F

and so by the quasi-r0 Lemma 4.1.5 X/ Ker ϕ ∈ F. Hence A ∈ F, our final contradiction.

Examples of Fitting classes containing U are the Fitting products F �N and N � F, where F is
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a Fitting class containing N. As mentioned in Section 4.1, F �N is a Fischer class and hence is

covered by Theorem 4.2.3. Hauck et al.[24] proved that totally permutable products behaved

nicely with respect to N � F as the following result shows.

Theorem 4.2.6. [24, Theorem 5] Let F be a Fitting class containing the class N of all nilpotent

groups. Consider the Fitting product N � F. Let the group G = AB be a totally permutable

product of subgroups A and B. Then G ∈ N � F if and only if A ∈ N � F and B ∈ N � F.

Proof. For both implications assume that B is a normal nilpotent subgroup of G and G =

AF (G). Also AN ∩ F (A) is centralised by B and is a normal subgroup of A. So AN ∩ F (A) is

a normal nilpotent subgroup of G and AN ∩ F (A) = AN ∩ F (G).

Assume first that A ∈ N � F, that is, A/F (A) ∈ F. Since A/AN and A/F (A)AN ∈ N it

follows that A/(AN∩F (G)) = A/(AN∩F (A)) ∈ F by the quasi-r0 Lemma 4.1.5. Again by the

quasi-r0 Lemma 4.1.5 applied to the group AN/(AN ∩ F (G)) ∈ F and the normal subgroups

(A ∩ F (G))/(AN ∩ F (G)) and AN/(AN ∩ F (G)), it follows that A/(F (G) ∩ A) ∈ F. Hence

G/F (G) = AF (G)/F (G) ∼= A/(F (G) ∩ A) ∈ F, that is, G ∈ N � F.

Conversely, assume that G ∈ N � F. Note that AN ∩ F (A) = AN ∩ F (G) is a normal subgroup

of G and A/(A ∩ F (G)) ∼= G/F (G) ∈ F. Since A/AN ∈ N, it follows that A/(AN ∩ F (G)) =

A/(AN ∩ F (A)) ∈ F by the quasi-r0 Lemma 4.1.5. Applying the quasi-r0 Lemma 4.1.5 again

to A/ANF (A) ∈ N, A/(AN ∩ F (A)) ∈ F and A/AF it follows that A/F (A) ∈ F. Therefore

A ∈ N � F. Hence the result follows.

Proposition 4.2.7. [26, Theorems 3.1 and 3.2] Let F be a Fitting class containing the class U

of all supersoluble groups. Let a group G = G1G2...Gn be a pairwise totally permutable product

of subgroups G1, G2, ..., Gn.

1. Assume that F satisfies the following property:

If a group G = AB is a totally permutable product of subgroups A and B such that if A ∈ F

and B ∈ F, then G ∈ F.

If Gi ∈ F for all i ∈ {1, 2, ..., n}, then G ∈ F.

2. Assume that F satisfies the following property:
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If a group G = AB is a totally permutable product of subgroups A and B such that if G ∈ F,

then A ∈ F and B ∈ F.

If G ∈ F, then Gi ∈ F for all i ∈ {1, 2, ..., n}.

Proposition 4.2.8. [25, Proposition 4] Let F be a Fitting class containing U and satisfying the

following condition:

If a group G = AB is the totally permutable product of subgroups A and B, then GF = AFBF.

Then, for a group G = AB which is the totally permutable product of subgroups A and B, the

following properties hold:

1. If A and B belong to F, then G belongs to F.

2. If G belongs to F, then A and B belong to F.

Proof. 1. G = AB = AFBF = GF ∈ F and the result follows.

2. Let G = AB be an F-group which is a totally permutable product of subgroups A and

B. The proof is by induction on |G|. Assume that 〈BG〉 = G. Since B centralises AN by The-

orem 2.3.3, AN centralises 〈BG〉 = G since AN is a normal subgroup of G. Hence AN ≤ Z(G).

This implies that AN ≤ Z(A). It follows that AN = 1 and so A ∈ N ⊆ F. By the hypothesis, it

follows that G = GF = AFBF = ABF and so B = BF(A∩B) by 1 since B is a totally permutable

product of subgroups of BF and A ∩ B ∈ F. So 〈BG〉 is a proper subgroup of G. Therefore

assume that both 〈AG〉 and 〈BG〉 are proper subgroups of G. Since B(〈BG〉 ∩ A) = 〈BG〉 ∈ F

it follows that B ∈ F by the inductive hypothesis. Analogously, A ∈ F.

The converse of Proposition 4.2.8 is not known to be true in general (see [25](pg. 6139)).

Proposition 4.2.9. [25, Proposition 5] Let F be a Fitting class containing U and satisfying the

following condition:
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For a group G = AB which is a totally permutable product of subgroups A and B, the fol-

lowing properties hold:

1. If A and B belong to F, then G belongs to F.

2. If G belongs to F, then A and B belong to F.

Suppose that the group G = G1G2...Gn is a pairwise totally pemutable product of subgroups

G1, G2, ..., Gn. Then (G1)F(G2)F...(Gn)F is a normal subgroup of G contained in GF and (Gi)F =

Gi ∩GF for all i ∈ {1, 2, ..., n}.

Proof. For any i ∈ {1, 2, ..., n} by Lemma 2.3.5 it follows that

[Gi,
∏n

j=1,j 6=iGj] ≤ ZU(G) =
∏n

i=1 ZU(Gi) ≤
∏n

i=1(Gi)F.

In particular,
∏n

i=1(Gi)F is a normal subgroup of G and hence
∏n

i=1(Gi)F ≤ GF by Statement

1 and Theorem 4.2.7. Moreover,
∏n

i=1(Gi)F ≤
∏n

i=1(Gi ∩GF) which is a normal subgroup of G

by Lemma 2.4.4(i). It follows that
∏n

i=1(Gi∩GF) ∈ F and so Gi∩GF ∈ F for all i ∈ {1, 2, ..., n}

by Statement 2 and Theorem 4.2.7. Consequently, Gi ∩GF = (Gi)F for all i ∈ {1, 2, ..., n} and

the result follows.

The converse of Proposition 4.2.8 holds for a Fischer class containing U as the result below

shows.

Theorem 4.2.10. [25, Theorem 1] Let F be a Fischer class containing U. Let the group

G = G1G2...Gn be a pairwise totally permutable product of subgroups G1, G2, ..., Gn. Then

GF = (G1)F(G2)F...(Gn)F and (Gi)F = Gi ∩GF for all i ∈ {1, 2, ..., n}.

Remark

An example of a Fitting class satisfying the property in Proposition 4.2.8 is a Fischer class

containing U as Theorem 4.2.10 shows. Examples of Fitting classes satisfying properties 1 and

2 in Propositions 4.2.7 and 4.2.9 are Fitting classes in Theorems 4.2.2, 4.2.3 and 4.2.6.
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4.3 Mutually Permutable Products and Fitting Classes

In this section results on mutually permutable products and Fitting classes are presented.

Most results on totally permutable products have not been generalised to mutually permutable

products. However, they are useful in the attempt to extend results on totally permutable

products to weakly totally permutable products.

One of the questions is, for which classes of groups does Theorem 4.2.10 hold for mutually

permutable products. A partial answer to this question is given below.

Theorem 4.3.1. [7, Theorem 4.3.13] Let an SC-group G = G1G2...Gn be a pairwise mu-

tually permutable product of subgroups G1, G2, ..., Gn. Then S(Gi) = Gi ∩ S(G) for every

i ∈ {1, 2, ..., n}, where S(X) is the soluble radical of a group X.

It is not known if Theorem 4.3.1 holds for non-SC groups. However, for n = 2, Theorem 4.3.1

can be generalised to non-SC groups as the following result shows.

Theorem 4.3.2. [18, Theorem 4] Let a group G = AB be a mutually permutable product of

subgroups A and B. Then S(A) = S(G) ∩ A and S(B) = S(G) ∩B.

Beidleman and Heineken [17] proved the following result:

Theorem 4.3.3. [17, Theorem 1] Let F be a Fitting class. Let a group G = AB be a mutually

permutable product of subgroups of A and B. If G ∈ F, then A′ ∈ F and B′ ∈ F.

As a consequence of Theorem 4.3.3 the following result is true:

Corollary 4.3.4. Let F be a Fitting class. Let a group G = AB be a mutually permutable

product of subgroups of A and B. Then A′ ∩GF ≤ AF and B′ ∩GF ≤ BF.

The dual statement to Theorem 4.3.3 is true as the following result shows:

Theorem 4.3.5. [20, Corollary] Let F be a Fitting class. Let a group G = AB be a mutually

permutable product of subgroups A and B. If A ∈ F and B ∈ F, then G′ ∈ F.

Bochtler also showed that 〈AF, BF〉 = AFBF.
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Theorem 4.3.6. [19, Theorem A] Let F be a Fitting class. Let a group G = AB be a mutually

permutable product of subgroups A and B. Then AFBF is a mutually permutable product of

subgroups AF and BF.

With the help of Theorem 4.3.6 it was shown that Corollary 4.3.4 is also dualized:

Theorem 4.3.7. [19, Theorem B] Let F be a Fitting class. Let a group G = AB be a mutually

permutable product of subgroups A and B. Then G′ ∩ AFBF is a subnormal subgroup of G

contained in F. In particular, G′ ∩ AFBF ≤ GF.

4.4 Weakly Totally Permutable Products and Fitting

Classes

This section is the work of the author. In this section some results on totally permutable

products in the framework of Fitting classes are extended to weakly totally permutable products.

In order to do this some structural results are first presented.

The first result in this section generalises Lemma 2.1.5 and extends [7, Corollary 4.2.11] to

weakly totally permutable products.

Lemma 4.4.1. Let a group G = AB be the weakly totally permutable product of subgroups A

and B. Then [A,B] is a nilpotent normal subgroup of G.

Proof. It is clear that [A,B] is a normal subgroup of G. Let A = A1A
U and B = B1B

U where

A1, B1 is an U-projector of A and B, respectively. Then since B centralises AU and A centralises

BU by Lemma 3.1.9, it follows that

[A,B] = [A1A
U, B1B

U] = [A1, B1]

which is contained in (A1B1)
′. Since A1B1 is a weakly totally permutable product of supersol-

uble subgroups A1 and B1 by Theorem 3.2.2, it follows that A1B1 is supersoluble by Theorem

3.2.3 and hence its derived subgroup is nilpotent. The result then follows.
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The following result generalises Corollary 2.3.4 to weakly totally permutable products.

Lemma 4.4.2. Let a group G = AB be the weakly totally permutable product of subgroups A

and B. Then [A,B] ≤ ZU(G). In particular, A ∩B ≤ ZU(G).

Proof. By Theorem 3.2.1 it follows that GU = AUBU. Let A1 and B1 be U-projectors of A

and B, respectively by Theorem 1.8.5. Then [A,B] = [AUA1, B
UB1] = [A1, B1] ≤ A1B1 by

Lemma 3.1.9. Moreover, A1B1 is a U-projector of G by Theorem 3.2.2. But (A ∩ B)[A,B] ≤

〈AG〉 ∩ 〈BG〉 ≤ CG(AUBU) = CG(GU) since AU and BU are normal subgroups of G by Lemma

2.2.2 and the fact that AU and BU centralise B and A respectively by Lemma 2.1.12. Hence

(A ∩B)[A1, B1] ≤ CA1B1(G
U) = ZU(G) by Theorem 1.8.10.

Corollary 4.4.3. Let a group G = AB be the weakly totally permutable product of subgroups

A and B. Then

G/ZU(G) = (AZU(G)/ZU(G))× (BZU(G)/ZU(G)).

Corollary 4.4.4. Let a group G = AB be the weakly totally permutable product of subgroups

A and B. Then ZU(A) = ZU(G) ∩ A, ZU(B) = ZU(G) ∩ B and ZU(G) = ZU(A)ZU(B). In

particular, A ∩B ≤ ZU(A) ∩ ZU(B).

Proof. By Corollary 4.4.3 it follows that

G/ZU(G) = (AZU(G)/ZU(G))× (BZU(G)/ZU(G)).

Since ZU(G) ∩ A is a supersolubly embedded normal subgroup of A, it follows that ZU(G) ∩

A ≤ ZU(A). Since ZU(G/ZU(G)) = 1, it follows that Z(AZU(G)/ZU(G)) = 1 by Corollary

4.4.3. So A/(ZU(G) ∩ A) has a trivial U-hypercentre. Thus ZU(G) ∩ A = ZU(A). Analogously

ZU(G) ∩B = ZU(B).

Let T = ZU(A)ZU(B). Then T is a normal subgroup of G by Lemma 2.4.4(i) and T ≤ ZU(G).

Hence T ∩ A is a subgroup of ZU(G). But by the definition of T , ZU(G) ∩ A is a subgroup of

T ∩ A. So ZU(G) ∩ A = T ∩ A. On the other hand, G/T is a totally permutable product of

subgroups AT/T and BT/T by Lemma 2.4.3(iv) since A ∩B ≤ T by Lemma 4.4.2. Hence
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| G/T |≤| AT/T || BT/T |=| A/(T ∩ A) || B/(T ∩B) |=

| A/(ZU(G) ∩ A) || B/(ZU(G) ∩B) |=| AZU(G)/ZU(G) || BZU(G)/ZU(G) |.

This coincides with the order of G/ZU(G). Since T ≤ ZU(G), it follows that

| G/ZU(G) |≤| G/T | and | G/T |≤| G/ZU(G) |. Consequently T = ZU(G) and hence the result

follows.

In an attempt to extend Theorems 4.2.3, 4.2.6 and 4.2.10, and Propositions 4.2.8 and 4.2.9, the

following lemma is useful.

Lemma 4.4.5. Let G = AB be a weakly totally permutable product of subgroups A and B. Let

F be a Fitting class containing U. Suppose that one of the following cases holds:

Case 1: either A,B ∈ F, but G /∈ F with |G|+ |A|+ |B| minimal, or

Case 2: G ∈ F but not both of A and B in F with |G|+ |A|+ |B| minimal.

Then, after interchanging the roles of A and B if necessary we have that B is a subnormal

supersoluble subgroup of G, 〈BG〉 is supersoluble and G = ANAp〈BG〉.

Proof. Then G has the following properties:

1.Without loss of generality assume that B is supersoluble and that A is not supersoluble. More-

over [AU, B] = 1.

By Lemma 3.1.9 [AU, B] = [A,BU] = 1. Now A and B cannot both be supersoluble, be-

cause in Case 1 G would be supersoluble by Theorem 3.2.3 and in Case 2 that would contradict

the choice of (G,A,B).

Suppose that neither A nor B is supersoluble. Then AU 6= 1 and BU 6= 1. Note that AU

cannot be central in A and BU cannot be central in B otherwise either A or B would be su-

persoluble contradicting our supposition. Then B ≤ CG(AU) < G and A ≤ CG(BU) < G.

Hence CG(AU) = B(A ∩ CG(AU)) is a weakly totally permutable product of subgroups B and
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(A∩CG(AU)). Assume that Case 1 holds. By the choice of (G,A,B) it follows that CG(AU) ∈ F.

Analogously CG(BU) ∈ F. Since CG(AU) and CG(BU) are normal subgroups of G it follows that

G = CG(AU)CG(BF) ∈ n0F = F. Assume now that Case 2 holds. Then CG(AU) is an F-group

since it is a normal subgroup of G. By the choice of (G,A,B), B ∈ F. Analogously A ∈ F

contradicting the choice of (G,A,B).

Hence assume that B is supersoluble and that A is not supersoluble.

2. B is a subnormal subgroup of G and 〈BG〉 ∈ U ⊆ F.

Firstly the argument is that 〈BG〉 ∈ U ⊆ F. Note first that [AU, B] = 1 implies that

[〈BG〉, AU] = 1. Now

(〈BG〉 ∩ A)/(〈BG〉 ∩ AU) ∼= (〈BG〉 ∩ A)AU/AU ∈ U

and

〈BG〉 ∩ AU ≤ Z(〈BG〉 ∩ AU),

so 〈BG〉 ∩ A is supersoluble. Since A ∩ B ≤ 〈BG〉 ∩ A it follows that 〈BG〉 = B(〈BG〉 ∩ A)

is a weakly totally permutable product of supersoluble subgroups and so 〈BG〉 ∈ U ⊆ F by

Theorem 3.2.3.

By Theorem 2.4.11 there exists L,M such that A′(A ∩B) ≤ L ≤ A and B′(A ∩B) ≤M ≤ B,

L and M are subnormal in G and G′ ≤ LM . If L = A and M = B, then in Case 1 it follows

that G = AB ∈ n0F = F and in Case 2 it follows that both A and B belong to F since A and

B are subnormal in G and F is a Fitting class.

Suppose that L < A and M < B.

Assume that Case 1 holds. Then BL and AM are normal F-subgroups of G by the choice of

(G,A,B). Hence G = (BL)(AM) ∈ n0F = F which is a contradiction.

Now suppose that Case 2 holds. Then since BL and AM are normal subgroups of G, it follows

that BL,AM ∈ F. By the choice of (G,A,B), A ∈ F, a contradiction. Suppose L = A and

M < B. If Case 1 holds, then G = A〈BG〉 ∈ n0F = F, contradiction. If Case 2 holds, then

A ∈ F, also a contradiction, since A is subnormal and F is a Fitting class.
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So it can be assumed that M = B and L < A and so B is a subnormal supersoluble subgroup

of G.

3. There exist a prime number p such that G = ANAp〈BG〉, where Ap is a Sylow p-subgroup of A.

Assume that ANAq〈BG〉 is a proper subgroup of G for all primes q, where Aq denotes a Sylow

q-subgroup of A. Then

ANAq〈BG〉 = ANAq〈BG〉 ∩ AB = ANAq(〈BG〉 ∩ AB) = ANAq(〈BG〉 ∩ A)B.

Note also that ANAq〈BG〉 is a normal subgroup of G. The subgroups B and

Xq = ANAq(〈BG〉 ∩ A) and B are weakly totally permutable subgroups since

A ∩ B ≤ (〈BG〉 ∩ A)ANAq. Assume that Case 1 holds. Then Xq ∈ F since it is a normal

subgroup of A and, by minimality of (G,A,B), XqB ∈ F. Hence G =
∏

q∈PXqB ∈ n0F = F,

a contradiction. Assume Case 2 holds. Then since XqB is a normal subgroup of G it follows

that XqB ∈ F. By the choice of (G,A,B), Xq ∈ F. Hence A =
∏

q∈PXq ∈ n0F = F, a final

contradiction.

Open Question 4.4.6. Can Theorem 4.2.3 be generalised to weakly totally permutable prod-

ucts?

The following result shows that Theorem 4.2.3 can be extended to weakly totally permutable

products where the Fischer class is F �N, with F a Fitting class containing U.

Theorem 4.4.7. Let F be a Fitting class containing the class U. Consider F�N, where N is the

class of all nilpotent groups. Let G = AB be a weakly totally permutable product of subgroups

A and B. Then G ∈ F �N if and only if A ∈ F �N and B ∈ F �N.

Proof. Suppose the theorem is not true and let G be a minimal counterexample. By Lemma

4.4.5, B is a subnormal supersoluble subgroup of G. So B ≤ GF and G = AGF for both

implications.

Assume that A ∈ F � N, that is, A/AF ∈ N. Then AN ≤ AF since N is a formation. This
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implies that AN is a subnormal F-subgroup of G by Theorem 2.4.10. So AN ≤ A ∩GF. Hence

A/(A ∩GF) ∼= AGF/GF = G/GF ∈ N, that is, G ∈ F �N, a contradiction.

Now assume that G ∈ F �N. Then G/GF
∼= A/(A ∩GF) ∈ N. So AN ≤ A ∩GF, which means

that AN is a subnormal F-subgroup of A. Hence AN ≤ AF and A/AF ∈ N, that is, A ∈ F �N

which is a contradiction. Hence the result follows.

It is not known if Theorem 4.2.7 can be extended to weakly totally permutable products. The

result below shows, however, that weakly totally permutable products behave nicely if the

Fitting product N2 � F is considered.

Theorem 4.4.8. Let F be a Fitting class containing the class N of all nilpotent groups. Con-

sider the Fitting product N2 � F. Let the group G = AB be a weakly totally permutable product

of subgroups A and B. Then A ∈ N2 � F and B ∈ N2 � F if and only if G ∈ N2 � F.

Proof. Suppose the theorem is not true and let G be a minimal counterexample. Then by

Lemma 4.4.5 since B is a subnormal supersoluble subgroup of G, it follows that B ≤ GN2 and

G = AGN2 for both implications.

Assume first that A ∈ N2�F, that is, A/AN2 ∈ F. By the quasi-r0 Lemma 4.1.5 A/(AN∩AN2) ∈

F since A/AN ∈ N ⊆ F. But AN ∩AN2 = AN ∩GN2 since AN ∩AN2 ≤ AN ≤ A′ is a subnormal

N2-subgroup of G by Theorem 2.4.10. Consider A/(AN(GN2 ∩ A)) ∈ N and A/AN ∈ N ⊆ F.

It follows that A/(GN2 ∩ A) ∈ F by the quasi-r0 Lemma 4.1.5 since A/(AN ∩ GN2) ∈ F. But

A/(GN2 ∩ A) ∼= AGN2/GN2 ∈ F, that is G ∈ N2 � F, a contradiction.

Assume now that G ∈ N2 � F. As in the previous argument AN ∩ AN2 = AN ∩ GN2 is a

subnormal N2-subgroup of G. Since A/(A∩GN2) ∼= G/GN2 ∈ F and A/AN ∈ N, it follows that

A/(AN ∩ AN2) ∈ F by the quasi-r0 Lemma 4.1.5. Applying the quasi-r0 Lemma 4.1.5 again

A/AN2 ∈ F, that is, A ∈ N2 � F. Hence the result follows.

Lemma 4.4.9. Let F be a Fitting class containing the class N. Let the group G = AB be

a weakly totally permutable product of subgroups A and B. Then AFBF is a weakly totally

permutable product of subgroups AF and BF.

Proof. By Lemma 3.1.1(ii) A∩B ∈ N ⊆ F is a subnormal F-subgroup of A and so A∩B ≤ AF.

Analogously A ∩B ≤ BF. Hence the result follows by Lemma 3.1.1(i).
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The following propositions extends Propositions 4.2.8 and 4.2.9 to weakly totally permutable

products.

Proposition 4.4.10. Let F be a Fitting class containing the class U of all supersoluble groups

and satisfying the following condition:

If a group G = AB is the weakly totally permutable product of subgroups A and B, then

GF = AFBF (4.1)

Then, for a group G = AB which is a weakly totally permutable product of subgroups A and B,

the following properties hold:

1. If A and B belong to F, then G belongs to F.

2. If G belongs to F, then A and B belong to F.

Proof. 1. G = AB = AFBF = GF ∈ F and the result follows.

2. Let G = AB be an F-group which is a weakly totally permutable product of subgroups

A and B. The proof by induction on |G|. Assume that 〈BG〉 = G. Since B centralises AU by

Lemma 3.1.9, AU centralises 〈BG〉 = G and so AU ≤ Z(G). This implies that AU ≤ Z(A). It fol-

lows that AU = 1 and so A ∈ U ⊆ F. By the hypothesis, it follows that G = GF = AFBF = ABF

and so B = BF(A ∩ B) ∈ F by 1 since B is a totally permutable product of subgroups of BF

and A ∩B ∈ F. Therefore assume that both 〈AG〉 and 〈BG〉 are proper subgroups of G. Since

B(〈BG〉 ∩ A) = 〈BG〉 ∈ F it follows that B ∈ F by the inductive hypothesis. Analogously,

A ∈ F.

Proposition 4.4.11. Let F be a Fitting class containing the class U of all supersoluble groups

and satisfying the following condition:

For a group G = AB which is a weakly totally permutable product of subgroups A and B,

the following properties hold:
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(a) If A and B belong to F, then G belongs to F.

(b) If G belongs to F, then A and B belong to F. (4.2)

Then AFBF is a normal subgroup of G, AFBF ≤ GF and, AF = A ∩GF and BF = B ∩GF

Proof. By Theorem 1.7.7 it follows ZU(A), ZU(B) ∈ U ⊆ F. By Lemma 4.4.2 it also follows

that [A,B] ≤ ZU(G) = ZU(A)ZU(B) ≤ AFBF. In particular, AFBF is a normal subgroup of

G. By (a) AFBF ≤ GF. Moreover, AFBF ≤ (A ∩ GF)(B ∩ GF) / GF by Lemma 2.4.4(i). So

(A∩GF)(B∩GF) ∈ F and A∩GF ∈ F, B∩GF ∈ F by (b). Hence A∩GF = AF and B∩GF = BF,

and the result follows.

Remark

The Fitting classes satisfying properties (4.1) and (4.2) in Propositions 4.4.10 and 4.4.11 re-

spectively, are F�N, where F is a Fitting class containing U (Theorem 4.4.7) and N2 �F, where

F is a Fitting class containing N(Theorem 4.4.8).

It remains to be determined if Theorem 4.2.10 can be extended to weakly totally permutable

products where the Fischer class is F �N, where F is a Fitting class containing U.

In this chapter it has been shown that some results on weakly totally can be extended to

weakly totally permutable products in the framework of Fitting classes.
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Chapter 5

Products of Finite Groups and Group

Classes

The main aim of the thesis was achieved since some results on totally permutable products

were extended to weakly totally permutable products. In Chapter 2 the following results were

presented.

Theorem 2.2.4 Let F be a formation containing U. Consider a group G = G1G2...Gn which

is the pairwise totally permutable product of subgroups G1, G2, ...., Gn. If for all i ∈ {1, 2, ..., n}

the subgroups Gi are in F, then G ∈ F.

Theorem 2.3.1 Let F be a formation containing U such that either F is saturated or F is

a formation of soluble groups. Consider a group G = G1G2...Gn which is the pairwise totally

permutable product of subgroups G1, G2, ...., Gn. Then GF = GF
1G

F
2 ...G

F
n.

Theorem 2.3.2 Let F be a saturated formation containing U. Consider a group G = G1G2...Gn

which is the pairwise totally permutable product of subgroups G1, G2, ...., Gn. If Ai is an F-

projector of Gi for all i ∈ {1, 2, ..., n}, then the product A1A2...An is an F-projector of G.

Theorem 2.5.4 Let the group G = G1G2...Gn be the pairwise totally permutable product of
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subgroups G1, G2, ..., Gn. Then G is an SC-group if and only if Gi is an SC-group for all

i ∈ {1, 2, ..., n}.

In Chapter 3 the results above were generalised when n = 2 as the results below show.

Theorem 3.2.1 Let F be a saturated formation containing U. Let a group G = AB be the

weakly totally permutable product of subgroups A and B. Then GF = AFBF.

Theorem 3.2.2 Let F be a saturated formation containing U. Let a group

G = AB be the weakly totally permutable product of subgroups A and B. If A1 and B1 are

F-projectors of A and B respectively, then A1B1 is an F-projector of G.

Theorem 3.2.3 Let F be a formation containing U. Let a group G = AB be the weakly

totally permutable product of subgroups A and B. If A and B belong to F, then G also belongs

to F.

Theorem 3.3.1 Let the group G = AB be the weakly totally permutable product of subgroups

A and B. Then G is an SC-group if and only if A and B are SC-groups.

In this chapter, the thesis is closed by looking at ideas on some of the open questions highlighted

in Chapter 3 and Chapter 4.

In Chapter 2 the following result was presented:

Theorem 2.3.3 Let a group G = AB be the totally permutable product of subgroups A and B.

Then [AN, B] = [A,BN] = 1.

In particular AN and BN are normal subgroups of G in the case above. There is Open Question

3.1.11 in Chapter 3 which asks:

If G = AB is a weakly totally permutable product of subgroups A and B, does AN centralise B?
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In this chapter we attempt to answer this question:

If G = AB is a weakly totally permutable product of subgroups A and B, are AN and BN

normal subgroups of G?

Considered is a counterexample below.

Lemma 5.0.12. Let a group G = AB be a weakly totally permutable product of subgroups A

and B. Consider the following property : The subgroup AN is a normal subgroup of G.

Suppose the property does not hold for weakly totally permutable products in general and let

G = AB be a counterexample with |G|+ |A|+ |B| minimal.

Then G is supersoluble.

Proof. Consider x ∈ B and let D = A ∩B. If D〈x〉 < B, then

|A〈x〉|+ |A|+ |D〈x〉| < |G|+ |A|+ |B|. Moreover, A〈x〉 is a weakly totally permutable product

of subgroups A and D〈x〉 by Lemma 3.1.1(i). By the choice of (G,A,B), it follows that AN is

normalised by D〈x〉. If for all x ∈ B, D〈x〉 < B, then AN is normalised by B = 〈D〈x〉 | x ∈ B〉,

a contradiction to the choice of (G,A,B). Hence B = D〈x〉 for some x ∈ B. Since B = D〈x〉

is a totally permutable product of subgroups D and 〈x〉, it follows that B is supersoluble by

Theorem 3.2.3.

Using Lemma 2.4.8, let N be a normal subgroup of G such that N ≤ A or N ≤ B. Then G/N

is a weakly totally permutable product of AN/N and BN/N by Lemma 3.1.3. By the choice

of (G,A,B), it follows that BN/N ≤ NG/N(ANN/N), that is, ANN is a normal subgroup of

G. Suppose that AU 6= 1. Then AU is a normal subgroup of G by Lemma 3.1.10 and hence

ANAU = AN is a normal subgroup of G, a contradiction. Hence AU = 1 and A is supersoluble.

By Theorem 3.2.3, G is supersoluble and the result follows.

Most results on totally permutable products presented in Chapter 2 were extended to weakly

totally permutable products when n = 2.

Considering Open Question 3.2.4, the key question is:
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If a group G = G1G2...Gn is a pairwise totally permutable product of subgroups G1, G2, ..., Gn,

is G supersoluble ? (5.1)

First let us look at PST -groups. Recall that a subgroup A of G is S-permutable in G if

A permutes with every Sylow subgroup of G (see [7], Definition 1.2.1, pg. 10).

Definition 5.0.13. A group G is a PST -group if S-permutability is a transitive in G, that is,

if A is an S-permutable subgroup of B and B is an S-permutable subgroup of G, then A is an

S-permutable subgroup of G.

The following result shows how a PST -group is characterised.

Lemma 5.0.14. [31, Lemma 2.3] A group G is a PST -group if and only if every subnormal

subgroup of G is an S-permutable subgroup of G

Ballester-Bolinches et al. [6] proved that if the factors are PST -groups, then the product is an

SC-group as the following result shows.

Theorem 5.0.15. [6, Theorem 6] Let a group G = G1G2...Gn the pairwise mutually permutable

product of subgroups G1, G2, ..., Gn. If Gi is a PST -group for all i ∈ {1, 2, ..., n}. Then G is an

SC-group.

Using Theorem 2.4.6 it follows that:

Corollary 5.0.16. Let a group G = G1G2...Gn be the pairwise mutually permutable product

of subgroups G1, G2, ..., Gn. If Gi is a soluble PST -group for all i ∈ {1, 2, ..., n}, then G is

supersoluble.

For a pairwise weakly totally permutable product in an attempt to answer question (5.1), a

minimal counterexample is considered below.

Lemma 5.0.17. Let a group G = G1G2...Gn be the pairwise weakly totally permutable product

of supersoluble subgroups G1, G2, ..., Gn. Suppose that

G is not supersoluble and let G be a counterexample with |G|+ |G1|+ |G2|+ ...+ |Gn| minimal.

Then
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(i) there exists Gi for some i ∈ {1, 2, ..., n} such that GN
i 6= 1,

(ii) if p is the largest prime dividing |G|, then the Sylow p-subgroup P of G is normal in G,

(iii) either G/P is supersoluble or P =
∏n

i 6=j,i=1,j=1(Gi ∩ Gj)p, where (Gi ∩ Gj)p is the Sylow

p-subgroup of Gi ∩Gj.

Proof. (i) If Gi is nilpotent for all i ∈ {1, 2, ..., n}, then by Corollary 5.0.16, G is supersoluble,

a contradiction to the choice of (G,G1, G2, ..., Gn). Hence (i) follows.

(ii) By Corollary 2.4.6 G is soluble. Let Pi be the Sylow p-subgroup of Gi, where p is the

largest prime dividing |G|. Then P = P1P2...Pn is a Sylow p-subgroup of G. Let Qi be a Hall

p′-subgroup of Gi. Then Q = Q1Q2...Qn is a Hall p′-subgroup of G.

Then Pi is normalised by Qi for all i ∈ {1, 2, ..., n} since Gi is supersoluble. Moreover

Pi(Gi∩Gj)Qj is a weakly totally permutable product of subgroups Pi(Gi∩Gj) and (Gi∩Gj)Qj

by Lemma 3.1.1(i). Also Pi(Gi∩Gj) and (Gi∩Gj)Qj are supersoluble by Theorem 3.2.3. Hence

Pi(Gi ∩ Gj)Qj is supersoluble for all i, j ∈ {1, 2, ..., n}, i 6= j. Therefore Pi is normalised by

Qj, that is, Pi is normalised by Q =
∏n

i=1Qi, the Hall p′-subgroup of G. It follows that P is

normalised by Q and P is the normal Sylow p-subgroup of G. Hence (ii) follows.

(iii) Suppose that there exists i ∈ {1, 2, ..., n} such that Ti =
∏n

i 6=j,j=1(Gi ∩ Gj)p < Pi.

Without loss of generality assume that T1 < P1. Then M = (T1Q1)G2G3...Gn is a pairwise

weakly totally permutable product of supersoluble subgroups T1Q1, G2, G3, ..., Gn. Moreover,

|M | + |T1Q1| + |G2| + |G3| + ... + |Gn < |G| + |G1| + ... + |Gn|. Hence by the choice of

(G,G1, G2, ..., Gn), it follows that M is supersoluble. Therefore G/P , which is isomorphic to a

factor group of M , is supersoluble.

Otherwise Ti = Pi and
∏n

i=1(
∏n

i 6=j,j=1(Gi ∩Gj)p). Hence (iii) follows.

On Fitting classes one of the unanswered questions is:

Is there a Fitting class satisfying property (4.1) of Theorem 4.4.10?

By considering H � N, where H is a Fitting class containing U, an attempt is made to an-

swer this question.
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Lemma 5.0.18. Let F = H�N, where H is a Fitting class containing U. Let a group G = AB be

the weakly totally permutable product of subgroups A and B. Then AF = A∩GF, BF = B ∩GF,

and A = AF〈a〉 and B = BF〈b〉 for some a ∈ A and b ∈ B.

Proof. The proof is by induction on |G|+ |A|+ |B|. Now G has the following properties:

(1) Let L = AFBF. Then AF = A ∩ GF and BF = B ∩ GF, and L is a normal subgroup of

G.

This is by Theorem 4.4.7 and Proposition 4.4.11.

(2) [G,GF] ≤ L; in particular, GF/L is abelian.

By Lemma 4.4.2

[A,B] ≤ ZU(G) ≤ ZU(A)ZU(B) ≤ L.

Hence

[AL,G] = [A,G][L,G] ≤ [A,A][A,B][L,G] ≤ AL

and

[BL,G] = [B,G][L,G] ≤ [B,B][A,B][L,G] ≤ BL

and so H = AL and K = BL are normalised by G and G = HK.

If either H = G or K = G, then

GF = AF(A ∩GF)BF(B ∩GF) = AFBF

and the result follows. Therefore assume that H and K are normal subgroups of G and

G = HK. So HF and KF are subgroups of GF. Since HF = GF ∩ AL = (GF ∩ A)L = L

and KF = GF ∩BL = (BF ∩ A)L = L by (1), it follows that
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[G,GF] = [HK,GF] = [H,GF][K,GF] ≤ HFKF = L.

If L is a proper subgroup of GF, since GF/L is abelian by (2), consider a normal subgroup

T = L〈x〉 of GF such that xp ∈ L, where x is a p-element and x = ab for some a ∈ A and b ∈ B,

where a and b are p-element and p is a prime number p.

(3) A = AF〈a〉 and B = BF〈b〉.

Let S = AF〈a〉B. It follows that T ≤ SF since T is a subnormal subgroup of G, T ≤ S

and T ∈ F. Let U = AF〈a〉 ≤ A and V = BF〈b〉 ≤ B. So S = AF〈a〉B is a weakly totally

permutable product of subgroups AF〈a〉 and B by Lemma 4.4.9 and Lemma 3.1.1.

Now if U is a proper subgroup of A, then |S| + |AF〈a〉| + |B| < |G| + |A| + |B| and by the

inductive hypothesis, it follows that SF = UFBF. Then

x ∈ SF ∩GF = (UF ∩GF)BF ≤ (A ∩GF)BF = AFBF = L

using (1). Then x ∈ L, contradicting the choice of x. Therefore U = A.

Analogously V = B and the hence the result follows.

Lemmas 5.0.12 and 5.0.17 may be used for further study on weakly totally permutable prod-

ucts.
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